18.212: Algebraic Combinatorics

Andrew Lin

Spring 2019

This class is being taught by **Professor Postnikov**.

February 11, 2019

As MIT students, we probably know a lot about computer science.

Fact 1

The Bible of computer science is "The Art of Computer Programming" by Knuth, and a lot of the material of this class comes from it.

Definition 2

A queue is a data structure that is first in first out, while a stack is last in first out.

A queue contains one or several entries, and it's like a line: if you enter the line first, you will exit first. Meanwhile, a stack is like a pile of papers. Main idea: we can use these to sort permutations, and Catalan numbers will appear again!

Proposition 3

The number of queue-sortable permutations of $(1, 2, \dots, n)$ is equal to C_n .

What does it mean to be queue-sortable?

Example 4

For n = 4, (2, 4, 1, 3) is queue-sortable. Put 2, then 4 in the queue, then put 1 in our list directly, take 2 out of the queue, put 3 directly, and then take 4 out of the queue.

But an example of something not queue-sortable is (3, 2, 1). We would have to put 3 in the queue and then 2, and that's bad because 3 comes out first.

Proposition 5

The number of stack-sortable permutations of $(1, 2, \dots, n)$ is also equal to C_n .

For example, (4, 1, 3, 2) is stack-sortable, since we put 4 in the stack, put 1 in the list directly, then put 3 and 2 in the stack and pop everything back out. But (2, 3, 1) is not stack-sortable.

The idea of sortability is related to the concept in combinatorics of **pattern avoidance**.

Definition 6

Given a permutation $w=(w_1,w_2,\cdots,w_n)$ of size n, where $w\in S_n$, the symmetric group, and a permutation $\pi=\pi_1,\pi_2,\cdots,\pi_k$ of size $k\leq n$, we say that w **contains** pattern π if there exists a not-necessarily-consecutive set (**subsequence**) of entries $w_{i_1},w_{i_2},\cdots,w_{i_k}$, whose entries are in the same relative order as π . Meanwhile, w is π -avoiding if it does not contain pattern π .

For example, let w=(3,5,2,4,1,6). If $\pi=(2,1,3)$, then w does contain π .

Proposition 7

Queue-sortable permutations are exactly those permutations that are 321-avoiding. Meanwhile, stack-sortable permutations are those that are 231-avoiding. Finally, for any pattern π of size 3, the number of π -avoiding permutations is C_n .

This is left as an exercise! By the way, we will not be required to solve all problems in a problem set, so some will be easier and some will be harder.

Time to move to the next topic! We're going to talk about partitions, Young diagrams, and Young tableaux.

Fact 8

Since the word "tableau" is French, we add an "x" to the end to make it plural.

Definition 9

A **partition** of *n* is a list of integers

$$\lambda = (\lambda_1, \cdots, \lambda_e)$$

such that $n = \lambda_1 + \cdots + \lambda_e$, the λ_i s are weakly decreasing, and all λ_i are positive integers.

We're talking about partitions, not compositions, so order doesn't matter. It's just by convention that people write them this way!

Example 10

Since 4 = 1 + 1 + 1 + 1 + 1 = 2 + 1 + 1 = 2 + 2 = 3 + 1 = 4, there are 5 partitions of 4.

Definition 11

A **Young diagram** is a shape where there are rows of $\lambda_1, \lambda_2, \cdots$ boxes that are left-justified. A similar term, Ferrers shapes, refers to similar diagrams with dots instead of boxes.

Here's what the Young diagrams look like for the partitions of 4:

Definition 12

A **Standard Young Tableau** (SYT) is a way to fill in the boxes of a Young digram with numbers $1, 2, \dots, n$ (without repetition) such that the numbers are increasing across rows and down the columns.

For example, if $\lambda = (4, 2, 2, 1)$, our tableau looks like \Box . By abuse of notation, we'll use λ for the Young diagrams

as well, and here's an example of a Young diagram:

1	3	4	7
2	6		
5	9		
8			

Definition 13

Let f^{λ} be the number of standard Young tableaux of shape λ .

Lemma 14

For $\lambda = (n, n)$, the number of standard Young tableau is

$$f^{(n,n)}=C_n.$$

Proof. Given a Standard Young Tableaux, construct a sequence $\varepsilon_1, \cdots, \varepsilon_{2n}$ such that

$$\varepsilon_i = \begin{cases} + & \text{if } i \text{ is in the first row} \\ - & \text{if it is in the second row} \end{cases}.$$

These are exactly the sequences that correspond to Dyck paths! For example, the following Young tableau corresponds to the Dyck path (+, +, -, +, -, -, +, +, -, -):

1	2	4	7	8
3	5	6	9	10

Any Young tableau will correspond to a path, since we always have at least as many integers in the top row as the bottom, and any path will correspond to a Young tableau: just write it out!

So we have a nice formula for $f^{(n,n)}$: we can think of these Young tableaux as an extension of the Catalan numbers. Is there a nice formula for f in general?

Theorem 15 (Hook Length Formula: Frame, Robinson, Thrall)

The number of standard Young tableaux for a partition λ is

$$f^{\lambda} = \frac{n!}{\prod_{x \in \lambda} h(x)}$$

where h(x) are the **hook lengths**; that is, the number of squares in a hook that goes to the right and down from square x. The **arm** is the length of the horizontal component not including x, and the **leg** is the length of the vertical

component not including x.

For example, this hook has length 6, arm length 2, and leg length 3:

Example 16

Take the partition $\lambda = (3, 2)$, so the Young diagram looks like

The possible Young tableaux are

1	2	3	. 1	2	4	. 1	2	5	. 1	3	4	. 1	3	5
4	5		3	5		3	4		2	5		2	4	

Meanwhile, here are the hook lengths for each square in the tableau:

By HLF, the number of possible standard Young tableaux is indeed

$$f^{\lambda} = \frac{5!}{4 \cdot 3 \cdot 1 \cdot 2 \cdot 1} = 5$$

as expected. There are many proofs of the Hook Length Formula, and it initially comes from representation theory. However, now there is a probabilistic proof using random walks, which we will cover later!

MIT OpenCourseWare https://ocw.mit.edu

18.212 Algebraic Combinatorics Spring 2019

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.