
Fall 2013 

18.310 Homework 2 Solutions 

.Instructions: Remember to submit a separate PDF for each question Do not forget to include 
a list of your collaborators or to state that you worked on your own. 

1. The following theorem and its proof are mathematically incorrect. 

Let n be any positive integer and recall that Zn = {0, 1, . . . , n − 1}. For a set 
X ⊆ Zn, let 2X = {2x (mod n) : x ∈ X}. 
Theorem 1. Suppose that X and Y are drawn independently and uniformly at 
random among all 2n subsets of Zn. Then P(2X ∩ Y = ∅) = 3

n 

4n . 

Proof. We know that a uniformly random set X can be generated by independently 
deciding to include i in X with probability
 1 

2 , for each i ∈ Zn. Thus, we obtain
 
that   n−1	 nn 3

P(2X ∩ Y = ∅) = P(if i ∈ X then (2i (mod n)) ∈/ Y ) = . 
4

i=0 

•	 To be handed in in recitation on 9/12/2013. Show that the theorem is false by 
explicitly calculating P(2X ∩ Y = ∅) for n = 2. Does your counterexample generalize to 
n = 3? (Also, think about what step of the current proof is incorrect prior to recitation.) 

•	 Writing assignment. (To be submitted with the rest of the problem set on 
9/18/2013.) Correct the statement of the theorem above so that it is true for every 
n. Provide a well-written proof. Pay attention to notation, and also to the issues that 
made the “proof” above wrong. 

Solution. The correct statement is the following. 

Theorem 2. Suppose that X and Y are drawn independently and uniformly at random among 
all 2n subsets of Zn. Then   


P(2X ∩ Y = ∅) =  
3 
4
5 
8 

rn 
if n is oddrn/2 
if n is even.
 

Proof. We know that a uniformly random set X can be generated by independently deciding
 
to include i in X with probability
 1 

2 , for each i ∈ Zn. Similarly for Y . Thus we can see the
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process of generating X and Y as coming from 2n independent coin tosses, n for X and n for 
Y . 

Now define event Ai for i ∈ Zn to be the event that if i is in X then 2i mod n is not in Y . 
The probability we are looking, P(2X ∩ Y = ∅), can thus be expressed as   

n−1 
P Ai . 

i=0 

It is easy to see that P(Ai) = 3 for any i.4 

In the case in which n is odd, we have that all n events (Ai)i=0,··· ,n−1 are independent since 
each depends on the result of two coin tosses (one for whether i is in X, the other whether 
2i is in Y ) and overall these correspond to distinct coins since 2i mod n is never equal to 
2j mod n unless i = j. Thus, we have that   

n −1 n−1 nn 3
P Ai = P(Ai) = . 

4 
i=0 i=0 

However, when n is even, the events Ai and Ai+n/2 are not independent as they both involve 
whether 2i mod n are not in Y . Instead, we define the event Bi to be Ai ∧Ai+n/2 for 0 ≤ i < n 

2 . 
Observe that Bi is the event that if either i or i + n (or both) is in X then 2i mod n is not in 2 

3 5Y ; therefore P(Bi) = 1 − P(2i mod n is in Y )P(either i or i + n/2 is not in X) = 1 − 1 = 8 .2 4 

2

We can now write ⎛ ⎞  −1 n 
n−1 ⎝ ⎠P Ai = P Bi . 
i=0 i=0 

nNow all our events Bi’s for i = 0, · · · , − 1 are independent and thus we obtain: 2 ⎛ ⎞  n n−1 −1n−1 n/222 n 
P Ai = P ⎝ Bi⎠ = P(Bi) = 

5
 
. 

8 
i=0 i=0 i=0 

2. The classroom that we are in has six blackboard frames. In some of the lectures, the instructor 
enjoys showing his (lack of) drawing skills and draws a pigeon on one or several board frames. 
Show that over the course of a semester with 36 lectures, there exist two lectures and three 
board frames such that these three frames either all had no pigeons drawn on them in both 
lectures, or all had at least one pigeon drawn on them in both lectures. 

Solution 1. In a lecture, there are 25 ways in which the instructor can draw or not draw a 
pigeon in the first 5 frames. Since 25 = 32 < 36, there are two lectures in which the professor 
leaves the first 5 blackboards the same way. Suppose this way involves leaving 3 of those 
frames empty. In this case these three frames all had no pigeons drawn in both lectures. If 
there are no 3 empty frames, there must be 3 frames that were drawn on. In this case these 
3 frames had pigeons in both lectures. 
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Solution 2. In any given lecture, there are at least two groups of three boards that either 
all have pigeons, or none of them do. Indeed, we have either (i) 3 boards with pigeons and 3 
boards without (and these are the two groups), or (ii) at least 4 boards all with pigeons or all 
without pigeons and in this latter case, we can choose any two subsets of size 3 of these (at 
least) 4 boards. So in 36 lectures, we have at least 72 of these groups of three. These groups r 
of three can be any of 2 6 = 40 in a given lecture. Since 40 < 72 there are two among these 3 
72 that occupy the same boards, and they correspond to two such lectures. 

3. A random	 variable Y : Ω → Z is distributed according to the Poisson distribution with 
parameter λ ≥ 0 if for all i ≥ 0 : 

P(Y = i) = e−λ λ
i 

. 
i! o∞•	 Verify that i=0 P(Y = i) = 1. 

•	 Show that E[Y ] = Var(Y ) = λ. 

•	 Suppose that each random variable X1, X2, . . . , Xn follows the Poisson distribution with o nparameter λi. Assume that all Xi are independent and let X = i=1 Xi. Show that, for 
µ ≥ E[X] and for all δ > 0 : 

µδe
P(X > (1 + δ)µ) ≤	 . 

(1 + δ)(1+δ) 

Hint: Compare this theorem with part (i) of Theorem 1 in the lecture notes on Chernoff 
Bound. Try to follow the proof of Theorem 1 closely. 

Solution: 

(a) This is just stating that  λi 
λ = e ,

i! 
i≥0 

which is true by Taylor’s theorem. 

(b) This is just a calculation:  λi  λi 
−λE[Y ] = e i = λe−λ = λ,

i! i! 
i≥1 i≥0 

and  
i2 λ

i  λi  λi 
−λ	 = λ2E[X2] = e = λe−λ i + λe−λ + λ,

i! i! i! 
i≥1 i≥1 i≥0 

and since Var[Y ] = E[X2] − E[X]2, the result follows. 

(c) Let r > 0 be arbitrary. We start with the inequality 

rX e r(1+δ)µ
l{X>(1+δ)µ} ≤ e . 

By the monotonicity of expectation, we get
 

rX ).
e r(1+δ)µP(X > (1 + δ)µ) ≤ E(e 
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Using the independence of the variables Xi we can calculate 

nn 
nλ(er −1)E(e rX ) = E(e rXi ) = e . 

i=1 

where we have used that 

riλi 
−λ e λ(er−1)E(e rXi ) = e = e . 

i! 
i≥0 

Plugging this calculation into our inequality, and using that µ ≥ E(X) = nλ, we get 

P(X > (1 + δ)µ) ≤ exp[nλ(e r − 1) − r(1 + δ)µ] ≤ exp[µ(e r − 1 − r(1 + δ))]. 

We optimize the value of er − 1 − r(1 + δ) to obtain r = log(1 + δ), which in turn gives 
us 

µδe
P(X > (1 + δ)µ) ≤	 . 

(1 + δ)(1+δ) 

4. You	 may have heard recently some story about former MIT students (and other groups) 
winning a fair amount of money at the Massachusetts lottery game Cash WinFall (if not, just 
google ‘Cash WinFall MIT students’). Let’s analyze the game (or some simplification of it). 

In Cash WinFall, a customer can buy a ticket for $2 which let him/her choose 6 numbers 
between 1 and 46 hoping to match the 6 (distinct) numbers being randomly selected at the 
next drawing. If the 6 numbers on the ticket match the 6 numbers that are drawn, he/she 
wins the jackpot, which is at least $500,000. The customer also wins prize money if 5, 4 or 
3 of the numbers are matched, see the second column in the table below for the prize money 
in each case. 

Match Prize money Example (from 2/8/2010) of 
prize money when rolldown 

6 out of 6 
5 out of 6 
4 out of 6 
3 out of 6 

jackpot 
$4,000 
$150 
$5 

-
$22,096 
$807 
$26 

The MIT students and the other groups exploited the fact that if the jackpot reaches $2,000,000 
and the jackpot is not won then part of the jackpot money is used to considerably increase 
the prize money for matching 5, 4 or 3 of the numbers; see the third column in the table 
above. Notice that the increase is more than 5-fold. Such a drawing is known as a rolldown 
drawing. The precise increase for a rolldown drawing is based on formulas that are not (quite) 
revealed to the public (and depends on the amount of the jackpot, etc.), but the increase is 
always very significant and of the order of magnitude shown in the 3rd column above. 

(a) For i = 6, 5, 4, 3, what is the probability pi that one ticket matches precisely i of the 6 
numbers that are randomly drawn? Give a formula and also numerically compute these 
probabilities. 
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Solution. We have that pi is r r

6 40 
i 6−i pi = r ,46 

6 

as we need to choose i numbers among the 6 winning ones, and 6 − i numbers among 
the remaining 40. The values are: 

1 
p6 = = 0.000000106 · · · 

9366819 
240 

p5 = = 0.000025622 · · · 
9366819 
11700 

p4 = = 0.001249090 · · · 
9366819 
197600 

p3 = = 0.021095742 · · · 
9366819 

(b) Let A be the event that one wins any amount of prize money when buying a single ticket. 
What is P(A)? 

Solution. It is the probability that we win some prize, i.e. 

209541 
p6 + p5 + p4 + p3 = = 0.022370561 · · · 

9366819 

(c) Let the random variable X be the prize money for a single ticket, assuming (i) that the 
jackpot amount is $1,900,000 and (ii) that the drawing is not a rolldown drawing. What 
is E(X)? Compute its numerical value. (Should you play?) 

Solution. E(X) = 1900000p6 + 4000p5 + 150p4 + 5p3 = 0.59817 · · · . (As this is less 
than the price of the winning, you shouldn’t be playing if you are rational...) 

(d) Assume that we have a rolldown drawing (i.e. no one wins the jackpot which happens 
to be over $2,000,000). Suppose furthermore that the prize money for matching 5, 4 or 
3 numbers are as in the 3rd column in the table. Let Y be the prize money for a single 
ticket under these assumptions. 

What is E(Y ) and Var(Y )? Compute their values. 

Solution. We have 

E(Y ) = 22096p5 + 807p4 + 26p3 = 2.12265658 · · · 

Also,
 
E(Y 2) = 220962 p5 + 8072 p4 + 262 p3 = 13337.416 · · ·
 

and thus
 
Var(Y ) = E(Y 2) − E(Y )2 = 13332.910451 · · ·
  

The standard deviation is Var(Y ) = 115.46 (much larger than the expected earnings). 
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(e) If you purchase only one ticket, you have a large probability of not recovering your bet. 
Now suppose you purchase 1,000,000 tickets1, each randomly drawn. Let Z be the total 
prize money received. 

What is E(Z)? What is Var(Z)? Use Chebyshev’s inequality to compute an upper 
bound on the probability that Z < 2, 000, 000 (i.e. that you are losing money). 

Solution. We have E(Z) = 1000000E(Y ) = 2122656.58, while Var(Z) = 1000000Var(Y ) = 
13332910451. (Not asked: Here the standard deviation is 115468, much more comparable 
to the expected profit of E(Z) − 2000000.) 

Chebyshev’s inequality says that 

Var(Z)
P(|Z − E(Z)| ≥ 2122656.58 − 2000000) ≤ = 0.886 · · · . 

122656.582 

This implies that the probability that Z < 2000000 is less than 0.886. 

(f) Now use the Chernoff-Hoeffding bound to compute a better upper bound on the proba­
bility that Z < 2, 000, 000. How much better is your result? 

(g) If the jackpot goes over $2,000,000, a rolldown might not happen since some ticket might 
win the jackpot. Suppose that, for a given drawing, the total number of (distinct) tickets 
sold2 is 1, 000, 000. Let B be the event that someone wins the jackpot. What is P(B)? 

−xTo evaluate this numerically, it is convenient to use the approximation3 1 − x ∼ e . 

Solution. We have 

1000000 
1 −1000000/(46 −0.10675983 = 0.1012585.P(B) = 1−P(¬B) = 1− 1 − r ∼ 1−e 6 ) = 1−e46 
6 

1The MIT students purchased up to 700,000 tickets for one drawing... 
2In 2004-2005, the number of tickets sold in anticipation of a rolldown drawing was never more than 950,000 and 

typically less than 600,000 while in 2007, the number of tickets sold in a rolldown drawing was typically between 
1,200,000 and 1,400,000. 

3 −x −xOne has 1 − x ≤ e for all x, and the approximation 1 − x ∼ e is very good for x close to 0. 
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