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Fall 2013 

18.310 Homework 12 
Due Wednesday December 4th at 6PM 

1. Suppose you are encoding a source that emits one of three letters:	 a with probability 2 , b 
with probability 1 and c with probability 16 .3 

(a) What is the Shannon bound on the best encoding of n letters from this source.
 

Solution. The expected length per letter is at least
 

1 1 1 1 1 1 
H(p) = − log2 − log2 − log2 = 1.4591 · · · 

2 2 3 3 6 6 

(b) Use the Huffman algorithm to find an optimal prefix code for encoding this source. What 
is the number of bits used per letter? 

Solution. To get the optimal prefix encoding, we take the two least frequent letters, b 
and c, and replace them by a letter α with pα = 0.5. The optimum for this new alphabet 
is (for example) a → 0 and α → 1, therefore we get as optimum for the original alphabet 

a → 0b → 10c → 11 

The expected length per letter transmitted is 

1 1 1 
1 · + 2 · + 2 · = 1.5. 

2 3 6 

2. Now, consider the same source as in problem (1), but the new 9-letter “alphabet” consisting 
of all pairs of letters, so aa would have probability 14 , ab would have probability 1 , etc. 6 

(a) What is the Shannon bound on the best encoding of n “letters” from this source. 
'Solution. The entropy of this new probability distribution p on A' = A × A (where 

A = {a, b, c}) is  
H(p') = − (i, j) ∈ A × Apipj log2(pipj )   

= − pi log2(pi) − pj log2(pj ) 
i∈A j∈A 

= 2H(p) = 2.9182 · · · . 

This was expected by Shannon’s theorem as generating independently n/2 ’letters’ from 
A' (with the associated probabilities) gives the same probabilistic source as generating 
n letters from A. Shannon’s bound for n letters is thus 2.9182n + o(n). 
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Solutions 



(b) Use the Huffman algorithm to find an optimal prefix code for encoding this source. What 
is the number of bits used per “letter’? Per letter of the original source?
 

Solution. Our new alphabet A ' and associated probabilities (in non-increasing order)
 
are: 

aa 1/4 = 9/36 
ab 1/6 = 6/36 
ba 1/6 = 6/36 
bb 1/9 = 4/36 
ac 1/12 = 3/36 
ca 1/12 = 3/36 
bc 1/18 = 2/36 
cb 1/18 = 2/36 
cc 1/36 = 1/36 

The best prefix code is given below (drawn upside down, as it was built by repeatedly 
combining the two least likely letters). 
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The Huffman code (with probabilities shown as well) is (there are several optimal ones):
 

aa 9/36 11 
ab 6/36 01 
ba 6/36 101 
bb 4/36 000 
ac 3/36 1000 
ca 3/36 1001 
bc 2/36 0011 
cb 2/36 00101 
cc 1/36 00100 

This gives an encoding with an expected number of bits per ‘letter’ of A ' of 

1 107 
(9 · 2 + 6 · 2 + 6 · 3 + 4 · 3 + 3 · 4 + 3 · 4 + 2 · 4 + 2 · 5 + 1 · 5) = = 2.9722 · · · ,

36 36
 

or 1.4861 per letter of A.
 

3. Level-Ziv encoding will be covered on Monday. 

(a) Suppose you encode n digits from the sequence 

12345678910111213141516171819202122 · · · 

obtained by concatenating all natural numbers. Approximately how many bits will this 
take to encode using Lempel-Ziv? By approximately, we mean that we care only about 
the asymptotic growth as n gets large. 

Solution. Each new number will become a new dictionary phrase. So, the ith phrase 
will require 4 + 1log2 il bits (since a decimal digit requires 4 bits) in its encoding. Now, 

nin the first n digits, there are approximately O( ) phrases. So, the total number of log10 n 
bits required is approximately 

n 
log10 n 

4 + 1log2 il 
i=1 

n 
log10 n 

≤ 5 + log2 i 
i=1     

5n n ≤ + log2 !
log10 n log10 n

Using big-O notation and Sterling’s approximation, the last line comes out to be about 
n nO( log2 ), which is equivalent to O(n) (roughly a constant times n), so this log10 n log10 n 

string does not compress very well using Lempel-Ziv. 

(b) Suppose you encode n bits from the sequence
 

01010101010101010101 · · ·
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obtained by alternating 0’s and 1’s. Approximately how many bits will this take to
 
encode using Lempel-Ziv?
 

Solution. Breaking up the first few phrases, we see the pattern:
 

0 

1 

01 

010 

10 

101 

0101 

01010 

1010 

10101. 

iSo, the ith phrase takes approximately digits (this could be proved formally by induc­2 √ 
tion). Therefore, the first n digits contains about 2 n phrases. Hence, the total number 
of bits required is about √ 

2 n 

1 + 1log2 il 
i=1 

√ √ 
Using the same analysis as above, we see that this is bounded above by 4 n+log2(2 n)!√ √ √ 
and below by 2 n + log2(2 n)!, so in big-O notation, it is O( n log n), i.e., roughly a √ 
constant times n log n. 
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