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Problem 1. Verify that | ) = cos%lO) + singll) and | /) = —sin%lO) + cos%ll)

are the corresponding eigenvectors to, respectively, the eigenvalues +1 and —1 of the
operator o = cosflo, + sinfo .

Solution:
: 6 .0
o|,/) = (cosbo, + sm@aX)(cos§|0) + sm§|1>)
o . .0 .0 0
= (COS@COSE + smHsm?lO) + (—cosHsmE + 51n¢9(:os§)|1)
= cos(f — g)IO) + sin(0 — g)lD
=17
: .0 0
ol/) = (cosbo, + sm@aX)(—sm§|O) + cos§|1))
.0 0 o . .0
= (—Cosﬁsmg + SIHQCOS§)|O> + (—COS@COS§ - 81n081n§)|1)

= sin(f — g)l()) — cos( — g)ll}
= =1

Problem 2. Show that

(100)ap + 110 4p) /N2 = (|4l g +1al5) /N2
where | ) and | ) are defined in Problem 1.

Solution:

| YAl g = (cosgIO)A + sing|1>A) ® (cosgl(J)B + Singll)B)

A% 0 . 6
= (cosi) [0)410)5 + COS§SHI§|0>A|1>B



2
IDAIDp

—i—smgcos 1) 410)p —1—(8111

Similarly,

|4l )p = (sin 100, + cosg 1)) ® (~sin 210)5 + cos 5 11))

0\? 0
(sm )|0>A|O>B—Cos§sm [0)411) 5

0 2
cos—) 11,4105

—sin Z cosgll)A |0)p +
Adding these two completes the proof.

Problem 3. For the state |¢) = L [0)4 ®|0)5 + 1), ® 1)z ), it can be seen that
J2 A B A B

a) Pr(1,/) = @10, @5 (/D)
= [N s @)

= | 5015 /2
R YA
—§(COS§) —g

where § = w /3 and | /) is the +1-eigenstate of the operator ¢ in Problem 1. |T) = |0)
is the +1-eigenstate of o, . Similarly it can be seen that

b) Pr(1/) = @I Na M@ (/DY) =

o) Pr(l7) = @I(Da @) (DIY) =

[\DI»—* l\-')l'—‘ [\DI»—*
/\
l\3|%
= '=
[\
Il

2
@) Pr(l) = @I U@ 1) DY) = (g) —3/8

where 6 = 7 /3 and | /) is the (-1)-eigenstate of the operator ¢ in Problem 1. ||) = |1)
is the (-1)-eigenstate of o, .

Problem 4. For the GHZ state
[) = (1004105 10y + 14 11| 1)e ) /2

evaluate the following expectation values:



<U§}®a§®a$>:—1
<Ué®0§®05>:—1
<cr{}®05®0§>:—1
<0§}®0)B(®0§>=+1

Solution:

af} ® ol ®J$|¢> = U)A} ® ol ®U$(|O>A|O>B|O>C +ID41Dp0e) /N2

= (1)1l D) 5 il e +10)4 (=0)10)5 (=)0} ) /2
= —[¢)

(ot @l ©0¥) = (|0t © ol ®ol|o)
=1

of @ o} @oy [¢) = oy @ @y (10041005100¢ + D405 11e) /2
= (il 115 il e + (—)|0)410)5 (=)0} ) /~2

= —[¥)
=
<Ué®0§®05>:—1
Similarly,
aé@)af@aglw:—lw) :<0é®05®0§>:—1
But,

st @ol|v)=v) = (ot wol wol)=1.

af} ® JYB ® O'g is the operator that corresponds to taking a measurement of 0';} on A,

B
Y

C, the result is (+1)(-1)(-1)=*+1! Do you notice anything paradoxical in the above results?

o, on B, ag on C, and multiplying the results, e.g. getting +1 for A, -1 for B, and —1 for

Solution:

From a classical point of view, we can correspond a random variable S l] to the result of

measurement of aij , which accepts only values +1 and —1, each with some probability.

This is also the case for the product of random variables of this form. For example,

S{/‘lS ng can only accept values +1 and —1, and therefore, its expected value should fall

in [-1,+1]. However, according to our calculations, this expected value is exactly -1,
which can only occur iff S{}S 555 = —1 with probability one! Using the same argument,

one can obtain



S x8E =8¢ =—1
SEx S8 x8Y = —1
SEx 8 x 8¢ =—1
S xSExS{ =+1
The paradox arises from the fact that the total product of the terms on the left hand side of

the above equations is a square, and therefore, always nonnegative, but from the values
on the right hand side, we get -1!

Problem 5. Suppose f is a one-to-one function, which can be constructed using the
following circuit:

X .y — f(x)

0 —g(x)

This circuit has €, gates and accepts n bits at the input (including data bits x and work

bits 0). g(z) is the data loaded on the work space after the operation of the circuit. f~*
can also be constructed using the following circuit with C,, gates:

— 1
XH 2 £

0 — g'(x)
n

Show that there exists a reversible circuit with the following operation that uses only
k(C, 4 C, 4 n) gates where k is a small constant:

X — f(x)
0 — 0
m
Solution:
f p— —
X C1 %) ] c11 — 0
0 g(x) —
n
O f(x — j— —
R, — X 4 X o ™
0 = g(f) I = 0
n



where C17! and 027! are the reverse circuits to C1 and C2. The above circuit uses less
than 2(C, + C, + n) gates.

Problem 6. Find what CNOT looks like in the basis {|+ +),|+ —),|— +),1— = }.
(write down the corresponding matrix representation.)

Solution:

See Exercise 4.20, and equations (4.24)—(4.27). The corresponding matrix looks like
this:

CNOT

o o o =
= o O O
S = O O
o O = O

Problem 7. Exercise 4.26 from the Nielsen and Chuang book. Note that the first two
rotations, from left, are R (7m/4) and the last two are R, (—m/4) where

R,(0) = exp(—io,0/2).
Solution:

The circuit in Exercise 4.26 can be redrawn as follows:

C

1

Cy — l—

[ b
YV

t_

where the block B is as follows:

C

2
t —R,(m/ OHB—R, (7 /)|~

If ¢, =0, then BB™! = I, and the whole circuit is the identity operator. Let’s assume
¢, = 1. Then,

if ¢, = 0, then
B=I@(R,(n/4)) =10R,(n/2) =1 —io,)/~2
if ¢, =1, then
B=1®R,(r/4)0R,(7/4)



where using a £ cos(r/8) and 8 £ sin(r/8), and 000, = ioy,0, = —0,

R,(m/4)oR,(m/4) = (al —iBoy)oy(al —ifoy)
= ozZJX —iaf{oy, 04} — 620Y0X0Y
= (a® + 52)0)( =0y,
we have
B=I®oy,c,=1

Using the above relations, one can obtain

B[0)]0) = |0)I+
Bl0)[1) = 0)1 =
BIDI0) = DI
BID|1) = [1)|0)

The CNOT gate between the first control bit and the test bit, changes |1) to |0) and vice

verca, and therefore, it is easy to verify that the first circuit behaves like a Toffoli gate
except for the input |1)c1 |0)C2 |1), for which there exist an extra factor —1.

Problem 8. Using a bit-query black box, which acts as follows
| X) @ [b)——1X) @b @ f(X))
make a phase-query black box with the following operation:
| X)—— (=1 X)
where X = b,b, ...b, in the binary representation and | X) = |b1>|b2>---|bn).

Solution:

See Section 6.1.1, equations (6.1)—(6.3).



