

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

2.111J/18.435J/ESD.79
 Quantum Computation
 Fall 2004

Problem Set 4
 Due: Tuesday, October 12 (in class)

Problem 1. Verify that $|\nearrow\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$ and $|\swarrow\rangle = -\sin\frac{\theta}{2}|0\rangle + \cos\frac{\theta}{2}|1\rangle$ are the corresponding eigenvectors to, respectively, the eigenvalues +1 and -1 of the operator $\sigma = \cos\theta\sigma_Z + \sin\theta\sigma_X$.

Problem 2. Show that

$$(|00\rangle_{AB} + |11\rangle_{AB})/\sqrt{2} = (|\nearrow\rangle_A|\nearrow\rangle_B + |\swarrow\rangle_A|\swarrow\rangle_B)/\sqrt{2}$$

where $|\nearrow\rangle$ and $|\swarrow\rangle$ are defined in Problem 1.

Problem 3. For the state $|\psi\rangle_{AB} = \frac{1}{\sqrt{2}}(|0\rangle_A \otimes |0\rangle_B + |1\rangle_A \otimes |1\rangle_B)$, verify that

$$\begin{aligned} \mathbf{a)} \quad \text{Pr}(\uparrow\nearrow) &\equiv \text{tr}(|\psi\rangle_{AB}\langle\psi||\uparrow\rangle_A\langle\uparrow|\otimes|\nearrow\rangle_B\langle\nearrow|) \\ &= \frac{1}{2}\left(\cos\frac{\theta}{2}\right)^2 = \frac{3}{8} \end{aligned}$$

where $\theta = \pi/3$ and $|\nearrow\rangle$ is the +1-eigenstate of the operator σ in Problem 1. $|\uparrow\rangle = |0\rangle$ is the +1-eigenstate of σ_Z . Similarly verify that

$$\begin{aligned} \mathbf{b)} \quad \text{Pr}(\uparrow\swarrow) &= \frac{1}{2}\left(\sin\frac{\theta}{2}\right)^2 = \frac{1}{8} \\ \mathbf{c)} \quad \text{Pr}(\downarrow\nearrow) &= 1/8 \\ \mathbf{d)} \quad \text{Pr}(\downarrow\swarrow) &= 3/8 \end{aligned}$$

where $\theta = \pi/3$ and $|\swarrow\rangle$ is the (-1)-eigenstate of the operator σ in Problem 1. $|\downarrow\rangle = |1\rangle$ is the (-1)-eigenstate of σ_Z .

Problem 4. For the GHZ state

$$|\psi\rangle = (|0\rangle_A|0\rangle_B|0\rangle_C + |1\rangle_A|1\rangle_B|1\rangle_C)/\sqrt{2}$$

evaluate the following expectation values:

$$\langle \sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C \rangle = ?$$

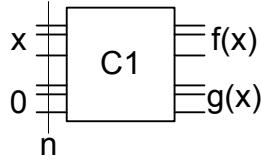
$$\langle \sigma_Y^A \otimes \sigma_X^B \otimes \sigma_Y^C \rangle = ?$$

$$\langle \sigma_Y^A \otimes \sigma_Y^B \otimes \sigma_X^C \rangle = ?$$

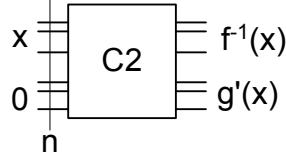
$$\langle \sigma_X^A \otimes \sigma_X^B \otimes \sigma_X^C \rangle = ?$$

$\sigma_X^A \otimes \sigma_Y^B \otimes \sigma_Y^C$ is the operator that corresponds to taking a measurement of σ_X^A on A, σ_Y^B on B, σ_Y^C on C, and multiplying the results, e.g. getting +1 for A, -1 for B, and -1 for C, the result is $(+1)(-1)(-1) = +1$! Do you notice anything paradoxical in the above results?

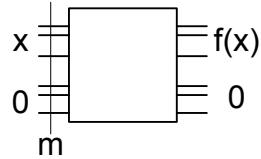
Problem 5. Suppose f is a one-to-one function, which can be constructed using the following circuit:



This circuit has C_1 gates and accepts n bits at the input (including data bits x and work bits 0). $g(x)$ is the data loaded on the work space after the operation of the circuit. f^{-1} can also be constructed using the following circuit with C_2 gates:



Show that there exists a reversible circuit with the following operation that uses only $k(C_1 + C_2 + n)$ gates where k is a small constant:



Problem 6. Find what CNOT looks like in the basis $\{|++\rangle, |+-\rangle, |-+\rangle, |--\rangle\}$. (write down the corresponding matrix representation.)

Problem 7. Exercise 4.26 from the Nielsen and Chuang book. Note that the first two rotations, from left, are $R_y(\pi/4)$ and the last two are $R_y(-\pi/4)$ where $R_y(\theta) = \exp(-i\sigma_Y\theta/2)$.

Problem 8. Using a bit-query black box, which acts as follows

$$|X\rangle \otimes |b\rangle \longrightarrow |X\rangle \otimes |b \oplus f(X)\rangle$$

make a phase-query black box with the following operation:

$$|X\rangle \longrightarrow (-1)^{f(X)} |X\rangle$$

where $X = b_1 b_2 \dots b_n$ in the binary representation and $|X\rangle = |b_1\rangle |b_2\rangle \dots |b_n\rangle$.