MIT 18.642

Probability Theory

Dr. Kempthorne

Fall 2024

Random Variables: Discrete, Continuous, Mixed

- Discrete Random Variable (outcomes countable)
 - Counter-party default (1=default/0=no default)
 - FOMC Decision on Fed Funds Rate
 - Indicator of Black-Swan event within next 3 months
 - Side ("buy" or "sell") of next market order AAPL stock
 - Share-size of next market order for AAPL stock
- Continuous Random Variable
 - Asset value (stock, currency, future, bond, ...)
 - Waiting time to next market order for AAPL stock
- Mixed (continuous and discrete) Variable
 - Value of a stock in 6 months which may go bankrupt (Value=0) private (Value = net buyout price)

Probability model for a random variable X

- Sample space of X
 - $\mathcal{X} = \{\text{all possible outcomes } X = x\}$
- Probability mass function for discrete X: $f_X(x)$

$$f_X(x) = P(X = x)$$
, for all $x \in \mathcal{X}$
$$\sum_{x \in \mathcal{X}} f_X(x) = \sum_{x \in \mathcal{X}} P(X = x) = 1$$

• Probability density function for continuous X: $f_X(x)$ When $\mathcal{X} \subset R = (-\infty, +\infty)$.

$$P(X \in [x, x + dx]) = f_X(x)dx$$
$$\int_{x \in \mathcal{X}} f_X(x)dx = \int_{-\infty}^{+\infty} f_X(x)dx = 1$$

Cumulative Distribution Function

$$F_X(x) = P(X \le x), x \in \mathcal{X} \subset R.$$

• For discrete X:

$$F_X(x) = \sum_{x' < x} f_X(x')$$

For continuous X:

$$F_X(x) = \int_{-\infty}^x f_X(u) du$$

Event and Event Probability : $A \subset \mathcal{X}$, $P(A) = P(X \in A)$

• For discrete X:

$$P(A) = P(X \in A) = \sum_{x \in A} f_X(x)$$

For continuous X:

$$P(A) = P(X \in A) = \int_{x \in A} f_X(x) dx$$

Expectations/Moments/Skewness/Kurtosis

The expectation/mean/first-moment of random variable X

the **expectation**/mean/first-moment of random variable
$$X$$

$$\mu = E[X] = \begin{cases} \int_{\mathcal{X}} x f_X(x) dx & \text{if } X \text{ continuous} \\ \sum_{x} x f_X(x) & \text{if } X \text{ discrete} \end{cases}$$

The **k-th moment** of random variable X ($k=1,2,\ldots$)

$$m_k = E[X^k] = \begin{cases} \int_{\mathcal{X}} x^k f_X(x) dx & \text{, if } X \text{ continuous} \\ \sum_{x} x^k f_X(x) & \text{, if } X \text{ discrete} \end{cases}$$

The variance of a random variable

$$var(X) = E([X - E(X)]^2) = E(X^2) - [E(X)]^2 = m_2 - m_1^2$$

Standard Deviation

$$\sigma = \sqrt{var(X)} = \sqrt{m_2 - m_1^2}$$
 same (!) units as X

Skewness

$$\gamma = E[(X - \mu)^3]/\sigma^3 = E[(\frac{X - \mu}{\sigma})^3]$$
. (no units!)

- $\gamma = 0$: X is symmetric about μ
- $\gamma >$ 0: X has positive skew (Long right tail) high probability of large positive values
- $\gamma <$ 0: X has negative skew (Long left tail) high probability of large negative values

Kurtosis

$$\kappa = E[(X - \mu)^4]/\sigma^4 = E[(\frac{X - \mu}{\sigma})^4]$$
 (no units!)

 $\kappa > 3 \iff$ **fat-tailed** (relative to Gaussian)

Normal/Gaussian Distribution

Definition. A **Normal (Gaussian)** random variable $X \sim N(\mu, \sigma^2)$ has density function:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}(\frac{x-\mu}{\sigma})^2}, \quad -\infty < x < +\infty.$$

with mean and variance parameters:

$$\mu = E[X] = \int_{-\infty}^{+\infty} xf(x)dx$$

$$\sigma^2 = E[(X - \mu)^2] = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x)dx$$

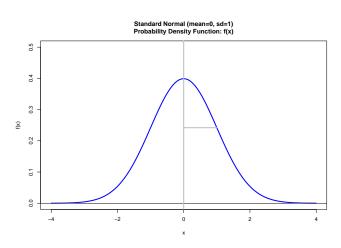
Note: $-\infty < \mu < +\infty$, and $\sigma^2 > 0$.

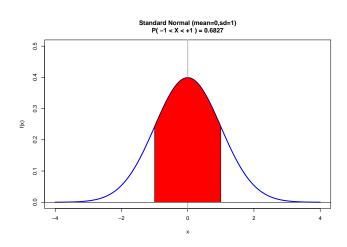
Properties:

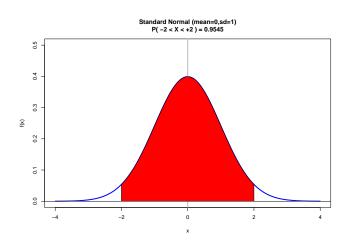
• Density function is symmetric about $x = \mu$.

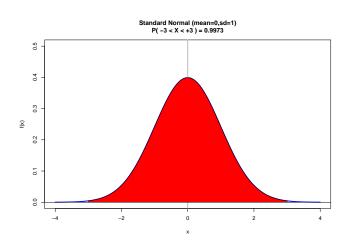
$$f(\mu + x^*) = f(\mu - x^*)$$
. (zero skewness $\gamma = 0$)

- f(x) is a maximum at $x = \mu$.
- f''(x) = 0 at $x = \mu + \sigma$ and $x = \mu \sigma$ (inflection points of bell curve)









Lognormal Distribution

Definition

- Random variable Y has the $lognormal(\mu, \sigma^2)$ distribution if x = log(Y) has a $N(\mu, \sigma^2)$ distribution.
- Equivalently, suppose random variable X has distribution $N(\mu, \sigma^2)$ with mean μ and variance σ^2 .

Define random variable
$$Y$$
 by transforming X
 $Y = e^{X}$

Then the distribution of Y is $lognormal(\mu, \sigma^2)$.

Change-of-Variables Theorem

Transforming a Random Variable

Suppose that X is a continuous real-valued random variable.

- Let g: R → R be a continuous, differentiable monotone increasing function, and define the random variable Y as Y = g(X)
- Let $h: R \to R$ denote the inverse function of g, also continuous, with derivative $h'(y) = \frac{d}{dy}h(y)$

$$X = h(Y)$$

E.g.,
$$y = g(x) = e^x$$
 and $h(y) = ln(y) = g^{-1}(y) = x$

Theorem (Change-of-Variables). If $F_X(x)$ is the cumulative distribution function of X then

$$F_Y(y) = F_X(h(y))$$

If $f_X(x)$ is the probability density function of X then

$$f_Y(y) = f_X(h(y))h'(y)$$

Lognormal Distribution Let Y be a $lognormal(\mu, \sigma^2)$ distribution. Then $X = \ln Y$ is $Normal(\mu, \sigma^2)$

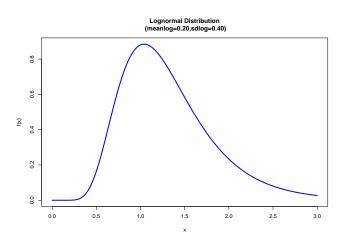
• The probability density function of Y is

ability density function of
$$Y$$
 is
$$f_Y(y) = \frac{d}{dy}P(Y \le y) = \frac{d}{dy}P(\ln Y \le \ln y)$$

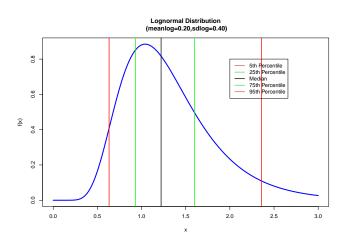
$$= [f_X(\ln y)]\frac{d}{dy}(\ln y)$$

$$= \left[\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(\ln y - \mu)^2}{2\sigma^2}}\right] \times \frac{1}{y}, \quad y > 0$$

Lognormal Model



Lognormal Model



Properties of Expected Value

Call Option Payoff:

- Option to Buy asset at time T at
 - Strike Price: K
- X: price of asset at time T
- Payoff: $C = (X K)^+ = max(0, X K)$

Theorem: Let f(x) be the probability density of X, $F(x) = \int_{-\infty}^{x} f(t)dt$ be the cumulative distribution function. If K is a constant and X has finite variance, then

$$E[(X-K)^+] = \int_K^\infty \left(\int_x^\infty f(t) dt \right) dx = \int_K^\infty [1 - F(x)] dx.$$

Proof:

$$E[(X - K)^{+}] = \int_{K}^{\infty} (x - K)f(x)dx$$

=
$$\lim_{M \to \infty} \int_{K}^{M} (x - K)f(x)dx$$

Integrate by parts:

$$u = x - K$$
 $v = -[1 - F(x)]$
 $du = dx$ $dv = f(x)dx$

Properties of Expected Value

Corollary 1: If X is a normal random variable with mean μ and standard deviation σ , and K is a constant, then

$$E[(X-K)^{+}] = (\mu - K)\Phi(\frac{\mu - K}{\sigma}) + \frac{\sigma}{\sqrt{2\pi}}e^{\frac{(K-\mu)^2}{2\sigma^2}}$$

where $\Phi(x)$ is the cumulative distribution function of the standard normal distribution (mean 0, standard deviation 1).

Corollary 2: If X is a log-normal (μ, σ) random variable and K is a constant, then

$$E[(X - K)^{+}] = e^{\mu + \sigma^{2}/2} \Phi(\frac{\mu - \ln K}{\sigma} + \sigma) - K\Phi(\frac{\mu - \ln K}{\sigma})$$

Moment-Generating Function: Definition/Theory

Definition: The moment-generating function of a random

variable
$$X: M_X(t) = E[e^{tX}] = \sum_{k=0}^{\infty} \frac{t^k}{k!} m_k$$

Theorem: Let X be a random variable with moment-generating function $M_X(t)$ and cumulative distribution function $F_X(x)$.

- 1 If Y is a a random variable satisfying $M_Y(t) = M_X(t)$ for all t, then X and Y have identical distributions, i.e., the cumulative distribution functions are the same.
- 2 Let X_1, X_2, \dots, X_n be a sequence of random variables such that

$$\lim_{i\to\infty}M_{X_i}(t)=M_X(t)$$

for all t. Then X_i converges to X in distribution, i.e., $\lim_{i\to\infty} F_{X_i}(x) = F_X(x)$, for all real x.

Moment Generating Functions (MGFs)

Normal Distribution: For
$$X \sim N(\mu, \sigma^2)$$

 $M_X(t) = E[e^{tX}] = e^{\mu t + \sigma^2 t^2/2}$

• Special case: standard normal $Z \sim N(\mu = 0, \sigma^2 = 1)$ $M_X(t) = E[e^{tZ}] = e^{\frac{1}{2}t^2}$

MGF of a Linear Transformation

- Random variable X has mgf $M_X(t)$.
- Define $Y = \mu + (\sigma \times X)$, for constants μ , σ

• The MGF of
$$Y$$
 is $M_Y(t) = E[e^{tY}]$
 $= E[e^{t(\mu+\sigma X)}]$
 $= e^{t\mu}E[e^{t\sigma X}]$
 $= e^{t\mu}M_X(t\sigma) = e^{\mu t + \frac{\sigma^2}{2}t^2}$

(Note: compute moments of Lognormal Distribution using Normal MGF)

More on Moments

Exercise: Find the skewness of a $lognormal(\mu, \sigma^2)$ random variable.

Exercise: Show that Kurtosis $\kappa = +3$ for a $Normal(\mu, \sigma^2)$ distribution.

Definition: A random variable X is **leptokurtic** if $\kappa > 3$.

Linear Transformations:

Consider a random variable X with mean μ and variance σ^2 . The linear transformation of X: Y = a + bX (constants a and b)

- $E[Y] = a + bE[X] = a + b\mu$
- $Var[Y] = b^2 Var[X] = b^2 \sigma^2$.

Exercise: If the skewness of X is γ , what is the skewness of Y? Exercise: If the kurtosis of X is κ , what is the kurtosis of Y?

Probability Concepts for Several Random Variables

Independent Random Variables / Events

Two random variables

X (with sample space
$$\mathcal{X}$$
 and pmf/density $f_X(x)$)
Y (with sample space \mathcal{Y} and pmf/density $f_Y(y)$)

- X and Y are **independent** if $P(\{X \in A\} \cap \{Y \in B\}) = P(\{X \in A\}) \times P(\{Y \in B\})$ for all $A \subset \mathcal{X}$ and all $B \subset \mathcal{Y}$
- If X and Y are independent, then the density/pmf function of the joint distribution of (X, Y) is $f_{X,Y}(x, y) = f_{X}(x)f_{Y}(y)$

Covariance and Correlation

Definitions

• The **covariance** of two random variables *X* and *Y* is

$$cov(X, Y) = E[(X - E[X])(Y - E[Y])]$$

Note: $cov(X, X) = var(X)$.

The correlation of two random variables X and Y is

$$cor(X, Y) = \frac{cov(X, Y)}{\sqrt{var(X)var(Y)}}$$

Note: If X and Y are independent, then

$$cov(X, Y) = 0$$
 and $cor(X, Y) = 0$..

(If cor(X, Y) = 0, then X and Y may not be independent!)

Random Vectors and Covariance Matrices

• Random variables: X_1, X_2, \ldots, X_n with $\mu_j = E[X_j], j = 1, \ldots, n$ $\sigma_{i,j} = cov(X_i, X_j), i, j = 1, \ldots, n$

• Random vector, mean vector

$$\vec{X} = \begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix}, E[\vec{X}] = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_n \end{bmatrix} = \vec{\mu},$$

- Covariance matrix $\Sigma = ||\sigma_{i,j}||$ with $\sigma_{i,j} = cov(X_i, X_j)$ $\Sigma = cov(\vec{X}) = E[(\vec{X} - E[\vec{X}])(\vec{X} - E[\vec{X}])^T]$ $(n \times n)$
- For $\vec{a} = [a_1, a_2, \dots, a_n]^T$ (constant vector) define $Y = \vec{a}^T \vec{X} = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$

Random Vectors and Covariance Matrices

(continued)

•
$$E[Y] = E[\vec{a}^T \vec{X}] = \vec{a}^T E[\vec{X}] = \vec{a}^T \vec{\mu}$$

• $var(Y) = E[(Y - E[Y])^2]$
 $= E[(\vec{a}^T X - \vec{a}^T \vec{\mu})^2]$
 $= E[(\vec{a}^T (\vec{X} - \vec{\mu}))^2]$
 $= E[\vec{a}^T [(\vec{X} - \vec{\mu})][(\vec{X} - \vec{\mu})]^T \vec{a}]$
 $= \vec{a}^T E[[(\vec{X} - \vec{\mu})][(\vec{X} - \vec{\mu})]^T] \vec{a}$
 $= \vec{a}^T [cov(\vec{X})] \vec{a}$
 $= \vec{a}^T \Sigma \vec{a}$
 $= \sum_i \sum_j a_i a_j \sigma_{i,j}$
 $= \sum_i a_i^2 var(X_i) + 2 \sum_{i < i} a_i a_j cov(X_i, X_j)$

Principal Components Analysis (PCA)

An m-variate random variable:

$$\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$$
, with $E[\mathbf{x}] = \boldsymbol{\alpha} \in \Re^m$, and $Cov[\mathbf{x}] = \boldsymbol{\Sigma}_{(m \times m)}$

- Eigenvalues/eigenvectors of Σ:
 - $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_m \geq 0$: m eigenvalues.
 - $\gamma_1, \gamma_2, \dots, \gamma_m$: m orthonormal eigenvectors:

$$oldsymbol{\Sigma} oldsymbol{\gamma}_i = \lambda_i oldsymbol{\gamma}_i, \quad i = 1, \dots, m$$
 $oldsymbol{\gamma}_i' oldsymbol{\gamma}_i = 1, \quad orall i$
 $oldsymbol{\gamma}_i' oldsymbol{\gamma}_i = 0, \quad orall i
eq i'$

- $\mathbf{\Sigma} = \sum_{i=1}^{m} \lambda_i \gamma_i \gamma_i'$
- Principal Component Variables:

$$p_i = \gamma_i'(\mathbf{x} - \boldsymbol{\alpha}), \quad i = 1, \dots, m$$

Principal Components Analysis

Principal Components in Vector/Matrix Form

- m-Variate \mathbf{x} : $E[\mathbf{x}] = \alpha$, $Cov[\mathbf{x}] = \mathbf{\Sigma}$
- $\Sigma = \Gamma \Lambda \Gamma'$, where $\Lambda = diag(\lambda_1, \lambda_2, ..., \lambda_m)$ $\Gamma = [\gamma_1 : \gamma_2 : \cdots : \gamma_m]$ $\Gamma'\Gamma = I_m$

•
$$\mathbf{p} = \begin{bmatrix} \rho_1 \\ \vdots \\ \rho_m \end{bmatrix} = \mathbf{\Gamma}'(\mathbf{x} - \boldsymbol{\alpha}), \ m$$
-Variate PC variables
$$E[\mathbf{p}] = E[\mathbf{\Gamma}'(\mathbf{x} - \boldsymbol{\alpha})] = \mathbf{\Gamma}' E[(\mathbf{x} - E[\mathbf{x}])] = \mathbf{0}_m$$

$$Cov[\mathbf{p}] = Cov[\mathbf{\Gamma}'(\mathbf{x} - \boldsymbol{\alpha})] = \mathbf{\Gamma}' Cov[\mathbf{x}]\mathbf{\Gamma}$$

$$= \mathbf{\Gamma}' \mathbf{\Sigma} \mathbf{\Gamma} = \mathbf{\Gamma}'(\mathbf{\Gamma} \lambda \mathbf{\Gamma}') \mathbf{\Gamma} = \mathbf{\Lambda}$$

• **p** is a vector of zero-mean, uncorrelated random variables that provides an *orthogonal basis* for **x**.

Principal Components Analysis

m-Variate x in Principal Components Form

•
$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ \vdots \\ x_m \end{array} \right] = \boldsymbol{\alpha} + \boldsymbol{\Gamma} \mathbf{p}$$
, where $E[\mathbf{p}] = \mathbf{0}_m$, $\mathit{Cov}[\mathbf{p}] = \boldsymbol{\Lambda}$

- Partition $\Gamma = [\Gamma_1 \Gamma_2]$ where Γ_1 corresponds to the K (< m) largest eigenvalues of Σ .
- Partition $\mathbf{p} = \begin{bmatrix} \mathbf{p}_1 \\ \mathbf{p}_2 \end{bmatrix}$ where \mathbf{p}_1 contains the first K elements.
- $\mathbf{x} = \alpha + \mathbf{\Gamma}_1 \mathbf{p}_1 + \mathbf{\Gamma}_2 \mathbf{p}_2 = \alpha + B \mathbf{f} + \epsilon$ where

Like factor model except $Cov[\epsilon] = \Gamma_2 \Lambda_2 \Gamma_2'$, where Λ_2 is diagonal matrix of last (m - K) eigenvalues.

Empirical Principal Components Analysis

The principal components analysis of

$$\mathbf{X} = [\mathbf{x}_1 : \cdots \mathbf{x}_T]_{(m \times T)}$$

consists of the following computational steps:

• Component/row means :
$$\bar{\mathbf{x}} = (\frac{1}{T})\mathbf{X}\mathbf{1}_T$$

• 'De-meaned' matrix:
$$\mathbf{X}^* = \mathbf{X} - \bar{\mathbf{x}} \mathbf{1}_T'$$

• Sample covariance matrix:
$$\hat{\mathbf{\Sigma}}_{x} = \frac{1}{T}\mathbf{X}^{*}(\mathbf{X}^{*})'$$

- Eigenvalue/vector decomposition: $\hat{\Sigma}_{x} = \hat{\Gamma} \hat{\Lambda} \hat{\Gamma}'$ yielding estimates of Γ and Λ .
- Sample Principal Components:

$$\mathbf{P} = [\mathbf{p}_1 : \cdots : \mathbf{p}_T] = \hat{\mathbf{\Gamma}}' \mathbf{X}^*. \ {}_{(m \times T)}$$

Empirical Principal Components Analysis

PCA Using Singular Value Decomposition

Consider the Singular Value Decomposition (SVD) of the de-meaned matrix:

$$X^* = VDU'$$

where

- **V**: $(m \times m)$ orthogonal matrix, $\mathbf{V}\mathbf{V}' = \mathbf{I}_m$.
- **U**: $(m \times T)$ row-orthonormal matrix, $\mathbf{U}\mathbf{V}' = \mathbf{I}_m$.
- **D**: $(m \times m)$ diagonal matrix, $\mathbf{D} = diag(d_1, \dots, d_m)$ with $d_1 \geq d_2 \geq \dots \geq 0$.

Exercise: Show that

- $\hat{\mathbf{\Lambda}} = \frac{1}{7}\mathbf{D}^2$
- $\hat{\Gamma} = V$
- $P = \hat{\Gamma}'X^* = DU'$

Alternate Definition of PC Variables

Given the m-variate $\mathbf{x}: E[\mathbf{x}] = \alpha$ and $Cov[\mathbf{x}] = \mathbf{\Sigma}$

• Define the **First Principal Component Variable** as $p_1 = \mathbf{w}'\mathbf{x} = (w_1x_1 + w_2x_2 + \cdots + w_mx_m)$ where the coefficients $\mathbf{w} = (w_1, w_2, \dots, w_m)'$ are chosen to maximize: $Var(p_1) = \mathbf{w}'\mathbf{\Sigma}_{\mathbf{x}}\mathbf{w}$ subject to: $|\mathbf{w}|^2 = \sum_{i=1}^m w_i^2 = 1$.

- Define the **Second Principal Component Variable** as $p_2 = \mathbf{v}'\mathbf{x} = (v_1x_1 + v_2x_2 + \cdots + v_mx_m)$ where the coefficients $\mathbf{v} = (v_1, v_2, \dots, v_m)'$ are chosen to maximize: $Var(p_2) = \mathbf{v}'\mathbf{\Sigma}_x\mathbf{v}$ subject to: $|\mathbf{v}|^2 = \sum_{i=1}^m v_i^2 = 1$, and $\mathbf{v}'\mathbf{w} = 0$.
- Etc., defining up to p_m , The coefficient vectors are given by $[\mathbf{w}:\mathbf{v}:\cdots]=[\gamma_1:\gamma_2:\cdots]=\mathbf{\Gamma}$

Principal Components Analysis

Further Details

PCA provides a decomposition of the **Total Variance**:

Total Variance
$$(\mathbf{x}) = \sum_{i=1}^{m} Var(\mathbf{x}_i) = trace(\mathbf{\Sigma}_{\mathbf{x}})$$

 $= trace(\mathbf{\Gamma}\mathbf{\Lambda}\mathbf{\Gamma}') = trace(\mathbf{\Lambda}\mathbf{\Gamma}'\mathbf{\Gamma}) = trace(\mathbf{\Lambda})$
 $= \sum_{k=1}^{m} \lambda_k$
 $= \sum_{k=1}^{m} Var(p_k)$
 $= Total Variance $(\mathbf{p})$$

• The transformation from \mathbf{x} to \mathbf{p} is a change in coordinate system which shifts the origin to the mean/expectation $E[\mathbf{x}] = \alpha$ and rotates the coordinate axes to align with the Principal Component Variables. Distance in the space is preserved (due to orthogonality of the rotation).

Chi-Square Distributions

Definition. If $Z \sim N(0,1)$ (Standard Normal r.v.) then $U = Z^2 \sim \chi_1^2$,

has a Chi-Squared distribution with 1 degree of freedom.

Properties:

• The density function of *U* is:

$$f_U(u) = \frac{u^{-1/2}}{\sqrt{2\pi}}e^{-u/2}, \ 0 < u < \infty$$

• Recall the density of a $Gamma(\alpha, \lambda)$ distribution:

$$g(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha-1} e^{-\lambda x}, \ x > 0,$$

So U is $Gamma(\alpha, \lambda)$ with $\alpha = 1/2$ and $\lambda = 1/2$.

Moment generating function

$$M_U(t) = E[e^{tU}] = [1 - t/\lambda]^{-\alpha} = (1 - 2t)^{-1/2}$$

Chi-Square Distributions

Definition. If $Z_1, Z_2, ..., Z_n$ are i.i.d. N(0,1) random variables $V = Z_1^2 + Z_2^2 + ... Z_n^2$ has a χ_n^2 distribution

Properties

- A Chi-Square r.v. V (n degrees of freedom) equals $V = U_1 + U_2 + \cdots + U_n$ where U_1, \ldots, U_n are i.i.d χ_1^2 r.v.
- Moment generating function

$$M_V(t) = E[e^{tV}] = E[e^{t(U_1 + U_2 + \dots + U_n)}]$$

= $E[e^{tU_1}] \cdots E[e^{tU_n}] = (1 - 2t)^{-n/2}$

- Because U_i are i.i.d. $Gamma(\alpha = 1/2, \lambda = 1/2)$ r.v.,s $V \sim Gamma(\alpha = n/2, \lambda = 1/2)$.
- Density function: $f(v) = \frac{1}{2^{n/2}\Gamma(n/2)}v^{(n/2)-1}e^{-v/2}, v > 0.$ (α is the **shape parameter** and λ is the **scale parameter**)

Student's t Distribution and Fisher's F Distribution

Definition. For independent r.v.'s Z and U where

- $Z \sim N(0,1)$
- $U \sim \chi_r^2$

the distribution of $T = Z/\sqrt{U/r}$ is the

t distribution with r degrees of freedom.

Definition. For independent r.v.'s U and V where

•
$$U \sim \chi_m^2$$
 and $V \sim \chi_n^2$

the distribution of $F = \frac{U/m}{V/n}$ is the

F distribution with *m* and *n* degrees of freedom. (notation $F \sim F_{m,n}$)

Properties

•
$$E[F] = E[U/m] \times E[n/V] = 1 \times n \times \frac{1}{n-2} = \frac{n}{n-2}$$
 (for $n > 2$).

• If
$$T \sim t_r$$
, then $T^2 \sim F_{1,r}$.

Law of Large Numbers

Theorem (Weak Law of Large Numbers - WLLN).

Suppose $X_1, X_2, \ldots, X_n, \ldots$ are i.i.d. (independent and identically distributed) with $E[X_i] = \mu$ and $var(X_i) = \sigma^2$.

Define $\bar{X}_n = \frac{1}{n}(X_1 + \cdots + X_n)$.

Then
$$\bar{X}_n \xrightarrow{pr} \mu$$
, i.e., for any $\epsilon > 0$ $\lim_{n \to \infty} P(|\bar{X} - \mu| > \epsilon) = 0$.

Proof: Apply Chebycheff's Inequality

- $var(\bar{X}_n) = \frac{\sigma^2}{n}$
- $\epsilon^2 P(|\bar{X}_n \mu| > \epsilon) \le var(\bar{X}_n)$
- $\Longrightarrow P(|\bar{X}_n \mu| > \epsilon) \le \frac{\sigma^2}{\epsilon^2} \frac{1}{n} \to 0$

Central Limit Theorem

Theorem (Central Limit Theorem). Let $X_1, X_2, ...$ be i.i.d. random variables with

$$E[X_i]=0$$
 and $var[X_i]=\sigma^2$, and MGF $M(t)=E[e^{tX_i}]$
Then the sequence of random variables $Z_n=\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i$ converges in distribution to the normal distribution $N(0,\sigma^2)$.

Proof: Evaluate the MGF of Z_n :

$$M_{Z_n}(t) = E[e^{tZ_n}] = E[e^{t\frac{1}{\sqrt{n}}\sum_{i=1}^n X_i}]$$

 $= \prod_{i=1}^n E[e^{\frac{t}{\sqrt{n}}X_i}]$
 $= \prod_{i=1}^n M(\frac{t}{\sqrt{n}}) = [M(\frac{t}{\sqrt{n}})]^n$

Apply Taylor Series to the MGF of X:

$$M(\frac{t}{\sqrt{n}}) = 1 + E[X](\frac{t}{\sqrt{n}}) + \frac{E[X^2]}{2}(\frac{t}{\sqrt{n}})^2 + O((\frac{t}{\sqrt{n}})^3)$$

$$= 1 + \frac{\sigma^2 t^2 / 2}{n} + o(\frac{t^2}{n})$$

$$\implies M_{Z_n}(t) = [M(\frac{t}{\sqrt{n}})]^n \rightarrow e^{\sigma^2 t^2 / 2} \text{ the MGF of } N(0, \sigma^2)$$

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.