Counterparty Risk Optimization

James Shepherd

Quantile Technologies (part of London Stock Exchange Group (LSEG))

2024-10-08

Contents

- Risk Measures
 - Types of Risk
 - Central Clearing
 - Value at Risk (VaR) and Expected Shortfall (ES)
 - Initial Margin
- Optimization
 - Optimizing Initial Margin within a Network
 - Challenges we run into in Real Life

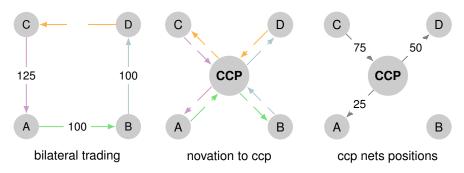
Derivative Risks

- market risk: arises from market movements
- credit risk: arises from debtors non-payment of an obligation
- operational and legal risk arises from people, systems and events
- liquidity risk arises when transaction cannot be executed at market price or from an inability to fund outgoing cashflows
- counterparty risk arises from the potential exposure of the market value of transactions when a counterpart defaults

Mitigation of Counterparty Risk

- **netting** : net together offsetting payments
- hedging : create new trades to offset the risk
- collateralisation: collection of collateral or margin payments
- other contractural clauses such as resetting mark-to-market (mtm) value or break clauses
- central clearing counterparties (CCPs)

Central Clearing Counterparties (CCPs)



The CCP facilitates offsetting positions to be netted against eachother

intuition: total counterparty risk $\sim \sum_{counterparties} \|position\|$

Risk Measures

Risk should measure

- size of the potential loss
- probability of that loss occurring

A function $\rho: X \to \mathbf{R}$ is *coherent* if it satisfies the following properties

- normalised $\rho(0) = 0$
- homogeneity $\rho(\alpha X) = \alpha \rho(X)$
- translation invariance if A is a deterministic portfolio with guaranteed return α then $\rho(X + A) = \rho(X) + \alpha$
- monotonicity if $X_1 \leq X_2$ in all scenarios then $\rho(X_1) \leq \rho(X_2)$
- sub-additivity $\rho(X_1 + X_2) \le \rho(X_1) + \rho(X_2)$

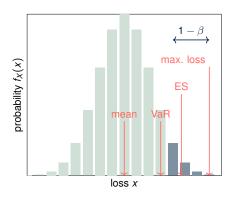
Value at Risk and Expected Shortfall

Value at Risk (VaR) is the maximum expected loss at a specific confidence level(β) over some time horizon

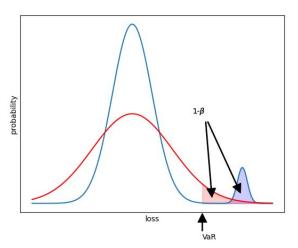
$$\int_{-\infty}^{VaR_{\beta}} f_X(x) \mathrm{d}x = \beta$$

Expected Shortfall (ES) is the expected loss conditional on having exceeded VaR

$$ES = \frac{1}{1 - \beta} \int_{VaB_a}^{\infty} x f(x) dx$$



fat tails



both portfolios have the same VaR but the blue portfolio has a higher probability of a much bigger loss

Sub-additivity of VaR and ES

-		Α	В		
	Loss Probability 100 4% 0 96%		Loss	Probability	
			100	4%	
			0	96%	
-	Vai	$R_{0.95} = 0$	$VaR_{0.95} = 0$		
	ES	$_{0.95} = 80$	$ES_{0.95} = 80$		

A+B					
Loss	Probability				
200	0.16%				
100	7.68% 92.16%				
0					
$VaR_{0.95} = 100$					
$ES_{0.95} = 103.2$					

- VaR is not sub-additive
- ES is sub-additive

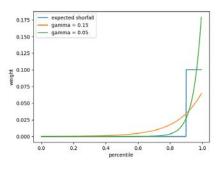
(at least in this case)

easy to find contrived examples where VaR is not sub-additive

hard to *prove* that Expected Shortfall is sub-additive

Spectral Risk Measures

A risk measure can be characterised according to the weights it assigns to percentiles of the loss distribution



- VaR assigns 100% to β percentile
- ES assigns equal weight to all percentiles > β
- exponential spectral risk $W = e^{-(1-q)/\gamma}$

a risk measure is sub-additive if *weight* is a non decreasing function of *percentile*

Time Horizon for VaR and ES

•
$$\Delta P_i \sim N(\mu, \sigma) \Rightarrow$$

$$VaR = \mu + \sigma N^{-1}(\beta)$$

$$ES = \mu + \sigma \frac{e^{-Y^2/2}}{\sqrt{2\pi}(1-\beta)}$$

where Y is the β percentile point of a standard normal distribution $\mathit{N}(0,1)$

• T-day
$$VaR = 1$$
-day $VaR * \sqrt{T}$

• T-day
$$ES = 1$$
-day $ES * \sqrt{T}$

• If the correlation between ΔP_i and ΔP_{i-1} is ρ , then variance of $\Delta P_{i-1} + \Delta P_i$ is

$$\sigma^2 + \sigma^2 + 2\rho\sigma^2 = 2(1+\rho)\sigma^2$$

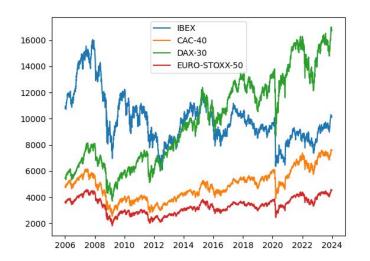
	T=1	T=2	T=5	T=10	T=50	T=250
$\rho = 0$	1.00	1.41	2.24	3.16	7.07	15.81
ho = 0.05	1.00	1.45	2.33	3.31	7.43	16.62
ho = 0.1	1.00	1.48	2.42	3.46	7.80	17.47
ho = 0.2	1.00	1.55	2.62	3.79	8.62	19.35

effect of autocorrelation on ratio of T-Day VaR (ES) to One-Day VaR (ES)

	t	t+1	t+2	t+3
t	1.00	0.12	-0.01	-0.02
t+1	0.12	1.00	0.12	-0.01
t+2	-0.01	0.12	1.00	0.12
t+3	-0.02	-0.01	0.12	1.00

observed auto-correlations for EURO-STOXX

Historical Simulation



Historical Simulation (II)

 v_i^j = value of j^{th} market variable on day i

 δ_j = portfolio weight for j^{th} market variable

$$\Delta P_i = \sum_j \delta_j \frac{v_i^j - v_{i-1}^j}{v_{i-1}^j} = \text{change}$$
 in value of the portfolio on day i

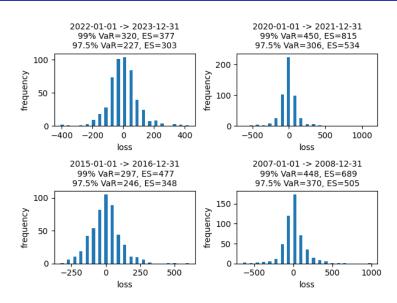
	CAC	DAX	IBEX	EUROSTOXX
2006-01-02	4757.54	5451.57	10814.60	3605.95
2006-01-03	4803.23	5496.46	10839.30	3638.42
2006-01-04	4838.52	5523.67	10898.90	3652.46
2006-01-05	4849.67	5526.41	10929.60	3661.65
2006-01-06	4867.15	5537.58	10929.60	3666.99

ν

CAC	DAX	IBEX	EUROSTOXX
3000.00	4000.00	2000.00	1000.00

 δ_j

Historical Simulation (III)



Historical Simulation (IV)

	2022-01-01	2020-01-01	2015-01-01	2007-01-01
12	226.69	305.96	246.47	369.99
11	229.28	309.30	254.17	372.76
10	235.26	344.38	257.59	380.05
9	237.44	351.35	260.55	382.57
8	239.70	369.55	268.87	392.87
7	239.89	393.51	286.93	400.31
6	316.83	397.21	291.90	421.37
5	320.18	450.41	296.98	448.43
4	341.13	596.02	335.56	489.14
3	362.01	712.32	452.86	592.39
2	370.56	800.91	508.75	654.86
1	436.24	1151.84	612.80	1017.71

biggest 12 losses from 500 in each time period

Model Building

$$\Delta P = \sum_{i=1}^{n} \delta_i \Delta x_i \quad \delta_i = \Delta P / \Delta x_i$$

$$\Delta x_i \sim N(0, \sigma_i) \Rightarrow \Delta P N(0, \sigma_P)$$

$$\sigma_P = \sqrt{\sum \sum_{\alpha:i} \delta_i \delta_i \sigma_i \sigma_i}$$

$$\sigma_{P} = \sqrt{\sum_{i} \sum_{j} \rho_{ij} \delta_{i} \delta_{j} \sigma_{i} \sigma_{j}}$$
$$\sigma_{P}^{2} = \delta^{\mathsf{T}} \mathcal{C} \delta$$

$$VaR(T, eta) = \sqrt{T}N^{-1}(eta)\sigma_P$$
 $ES(T, eta) = \sqrt{T}rac{e^{-N^{-1}(eta)}}{\sqrt{2\pi}(1-eta)}\sigma_P$

	CAC	DAX	IBEX	EUROSTOXX
CAC	0.000102	0.000097	0.000080	0.000094
DAX	0.000097	0.000108	0.000082	0.000096
IBEX	0.000080	0.000082	0.000089	0.000076
EUROSTOXX	0.000094	0.000096	0.000076	0.000096

variance covariance $\ensuremath{\mathcal{C}}$ matrix for indices based on period 2022-01-01 to 2023-12-31

$$VaR(1,99\%) = 225 \ ES(1,99\%) = 257$$

Probability of exceeding VaR on *m* or more days from a sample of *n* is

$$\sum_{k=m}^{n} \frac{n!}{k!(n-k)!} p^k (1-p)^k$$

$$n = 500, m = 12, p = 0.01 \Rightarrow P = 5.2\%$$

Fundamental Review of the Trading Book

- Basel I based on VaR(10 days, 99% confidence)
- Basel II.5 based on Stress VaR
- FRTB based on ES(variable horizon, 97.5% confidence)
 - $99\% VaR = \mu + 2.326\sigma$
 - $97.5\%ES = \mu + 2.338\sigma$

Expected Shortfall as as Optimization Problem

- $X \in \mathbb{R}^n$ is the set of available portfolios
- $Y \in \mathbb{R}^m$ is the set of possible market changes
- $f(x, y) \in \mathbb{R}$ is the loss associated with a given portfolio $x \in X$ and given market change $y \in Y$
- $\rho(y)$ is the density of the probability distribution of y
- $\psi(x,\alpha) = \int_{f(x,y) \le \alpha} \rho(y) dy$ is the probability of f(x,y) not exceeding α with above definitions, we can rewrite
 - $VaR_{\beta}(x) = min\{\alpha \in \mathbb{R} \text{ s.t. } \psi(x,\alpha) \geq \beta\}$
 - $ES_{\beta}(x) = \frac{1}{1-\beta} \int_{f(x,y) \geq VaR_{\beta}(x)} f(x,y) \rho(y) dy$

Expected Shortfall as as Optimization Problem II

$$F_{\beta}(x, \alpha) = \alpha + \frac{1}{1 - \beta} \int_{y \in \mathbb{R}^m} [f(x, y) - \alpha]^+ \rho(y) dy$$

where

$$[t]^+ = max(t,0)$$

- ullet As a function of α , F is convex and continuously differentiable
- $ES_{\beta} = \min_{\alpha \in \mathbb{R}} F_{\beta}(x, \alpha)$

and the portfolio $x \in X$ with the minimum ES can be found by solving the optimization problem

$$\min_{(x,\alpha)\in X_X\mathbb{R}} F_{\beta}(x,\alpha)$$

Expected Shortfall as as Optimization Problem III

$$F_{\beta}(x,\alpha) = \alpha + \frac{1}{1-\beta} \int_{y \in \mathbb{R}^m} [f(x,y) - \alpha]^+ \rho(y) dy$$
$$\frac{\partial}{\partial \alpha} F_{\beta}(x,\alpha) = 1 + \frac{1}{1-\beta} (\psi(x,\alpha) - 1) = \frac{1}{1-\beta} (\psi(x,\alpha) - \beta)$$

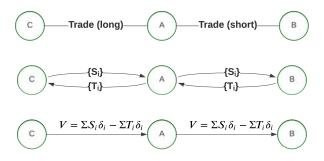
evaluating F_{β} at the point where $\psi(x,\alpha)=\beta$). The integral equals

$$\int_{f \ge \alpha_{\beta}} \left[f(x, y) - \alpha_{\beta}(x) \right] \rho(y) dy = \int_{f \ge \alpha_{\beta}} f(x, y) \rho(y) dy - \alpha_{\beta}(x) \int_{f \ge \alpha_{\beta}} \rho(y) dy$$
$$= (1 - \beta) ES_{\beta} - \alpha_{\beta} (1 - \psi(x, \alpha_{\beta}))$$

So

$$min_{\alpha \in \mathbb{R}} F_{\beta}(x, \alpha) = \alpha_{\beta} + \frac{1}{1 - \beta} \left[(1 - \beta) ES_{\beta} - \alpha_{\beta}(x) (1 - \beta) \right] = ES_{\beta}(x)$$

Counterparty Risk and Margin for Derivatives



To mitigate the risk that a counterparty may not pay S_{next} or T_{next} at the next cashflow payment date, *variation margin VM* = V is collected on a daily basis If a counterparty defaults then they stop posting VM. During the time taken to rehedge or unwind that position, the value V moves due to market movements. This potential loss is covered by collecting *initial margin* (IM)

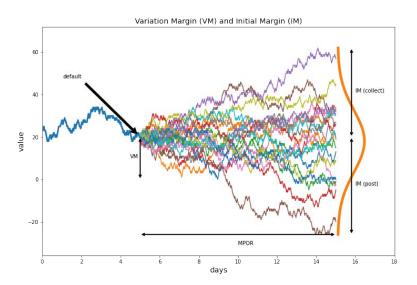
Margin

Margin is a form of collateral posted between counterparts to cover potential losses from derivatives

- Variation Margin (VM) covers current present value
- Initial Margin (IM) covers potential valuation changes due to market movements between when a counterpart default and when the party can exit the position, at time $t=\delta t$

 δt is called the *Margin Period of Risk* (MPOR) Margin is *posted* by the counterparty to the party which *collects* the margin

Margin



ISDA SIMM

Standard Initial Margin Model (SIMM)

- covers non centrally cleared (i.e. bilateral) derivative contracts
- has been phased in since 2016 as a result of Basel III rules
- is an exposure based proxy for 10-day VaR at 99% confidence i.e $\delta t = \frac{14}{365}, \beta = 0.99$

Assume we have a portfolio facing some counterparty with value P(t) and that counterparty defaults at time t=0.

- variation margin covers the value at t = 0 i.e. VM(0) = P(0)
- assume change in P only due to market perturbations
- ullet ignore path dependence, cashflows occurring in $(0,\delta t)$, discounting effects

$$P(\Delta t) \approx P(\mathcal{M}(0) + \Delta \mathcal{M}) \approx P(0) + \delta \Delta \mathcal{M} + \frac{1}{2} \gamma (\Delta \mathcal{M})^2$$

where $\mathcal{M}(t)$ is the state of the market at t and $\Delta \mathcal{M}$ is some perturbation in the market between t=0 and $t=\Delta(t)$

ISDA SIMM II

Assume market risk factor movements are jointly Gaussian with zero mean

$$\Delta\mathcal{M} \sim \mathcal{N}(0,\mathcal{C})$$

where $C_{ij} = \sigma_i \rho_{ij} \sigma_j$ is the covariance matrix. $P(\Delta t)$ is Gaussian with mean, μ and variance σ^2

$$\mu = P(0) + \frac{1}{2} Tr(\gamma C)$$

$$\sigma^2 = \delta^T C \delta + \frac{1}{2} Tr((\gamma C)^2)$$

trying to find an amount IM such that

$$\mathbb{P}(P(\Delta t) - P(0) < \mathit{IM}) = 0.99$$

which implies

$$\textit{IM} \approx 2.326\sqrt{10}\sqrt{\delta^{\textit{T}}\mathcal{C}\delta} + \frac{1}{2}\sqrt{10}\textit{Tr}(\gamma\mathcal{C}) + \lambda\sqrt{\frac{1}{2}\textit{Tr}((\gamma\mathcal{C})^2)}$$

ISDA SIMM Practical Matters

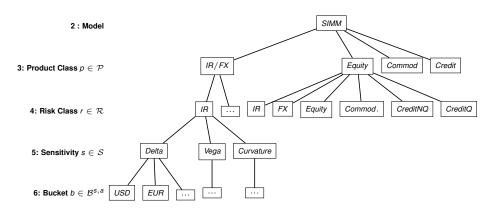
Problems with the formulation so far

- too many risk factors in \mathcal{M} . ie $\mathcal{C}, \delta, \gamma$ are too big
- \bullet γ is hard to compute

more simplifying assumptions

- ullet $\gamma \propto rac{\mathcal{V}}{T\sigma_N}$ where \mathcal{V} is the vega of the portfolio
- risk factors (components of M) can be grouped into buckets and risk classes (eg IR, FX, Equity)
- the portfolio can be separated into product classes with no netting benefit between them
- correlations and other parameters are recalibrated annually
- additional terms address thresholds and concentration risk.
- some variations of scope between regulators. The posted IM is the maximum SIMM for any regulator

SIMM Tree

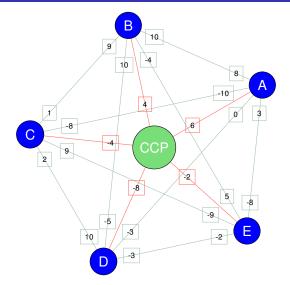


Large Positions

Various approaches are used to address (concentrated) positions

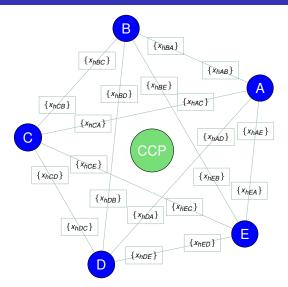
- adjust the Margin Period of Risk $\Delta T = \Delta T_0 \max(1, \frac{N}{N_0})$. For $N > N_0$, $IM \sim N^{\frac{3}{2}}$
- Addons $W(\delta)$ $\delta C \delta^T$ where W is some monotonically increasing function, eg piecewise linear

Multilateral Margin Optimization



network of banks with cleared and bilateral positions

Multilateral Margin Optimization (II)



goal of multilateral optimization : find hedge trades to reduce the total initial margin in the system

The Margin Minimization Problem

 ${\cal H}$ is a set of hedges, ${\cal M}$ is a set of market risk factors, ${\cal P}$ is a set of parties, ${\cal D}$ is some risk metric

$$\text{minimize} \sum_{p \in \mathcal{P}} \left(\sum_{q \in \mathcal{P}, q \neq p} \textit{SIMM}_{p,q} + \sum_{\textit{ccp} \in \mathcal{CCP}} \textit{IM}_{p,\textit{ccp}} \right)$$

where
$$\mathit{SIMM}_{p,q} = \mathit{SIMM}_{p,q}(\mathcal{D}_{p,q}), \ \mathit{IM}_{p,ccp} = \mathit{IM}_{p,ccp}(\mathcal{D}_{p,q})$$

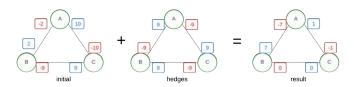
such that
$$\mathcal{D}_{p,q,m} = \mathcal{D}_{p,q,m}^0 + \sum_{h \in \mathcal{H}} x_{h,p,q} \mathcal{D}_{h,p,q,m} \quad \forall m \in \mathcal{M}$$

$$x_{h,p,q} = -x_{h,q,p} \quad \forall h \in \mathcal{H}, \forall p, q \neq p \in \mathcal{P}$$

$$\sum_{q\in\mathcal{P}}x_{h,p,q}=0\quad\forall h\in\mathcal{H},p\in\mathcal{P}$$

$$\mathcal{T}_{p,q,m}^{-} \leq \sum_{h} x_{h,p,q} \mathcal{D}_{h,p,q,m} \leq \mathcal{T}_{p,q,m}^{+} \ \forall m \in \mathcal{M}, \forall p,q \neq p \in \mathcal{P}$$

Toy Model of Margin Minimization



Moving a fixed amount of some derivative around a 3-party system is guaranteed to satisfy

- party counterparty symmetry: $x_{h,p,q} = -x_{h,q,p}$
- cashflow flatness: $\sum_q x_{h,p,q} = 0$

margin $\sum_{p,q} |x_{hpq}^0 - x_{hpq}|$ is minimised when x is the median of x^0

Numerical Solutions of Constrained Optimization Problems

minimize
$$f_0(x)$$
 subject to $f_i(x) \le b_i$, $i = 1 \dots m$

solving convex optimization problems is much easier than general

- non-linear optimization problems
- convexity is equivalent to sub-additivity $f_i(\alpha x + \beta y) \le \alpha f_i(x) + \beta f_i(y)$
- Minimizing ES is a piecewise linear problem
- SIMM is nearly convex
- Concentration addons are potentially convex
- the state of technology for solving convex optimisation problems is very mature
- but the ease of solution is highly dependent on problem specifics

Modelling Languages and Solvers

modelling languages *vastly* simplify the task of setting up an optimization problem

solvers perform the actual numerical steps several commercial and open source modelling languages and solvers are available

```
import gurobipy as gp
from gurobipy import GRB
m = gp.Model()
x1 = m.addVar(vtype=GRB.INTEGER, name="x1", lb=0)
x2 = m.addVar(vtype=GRB.INTEGER, name="x2", lb=0)
m.setObjective(5*x1 + 8*x2, GRB.MAXIMIZE)
m.addConstr(x1 + x2 <= 5, "c1")
m.addConstr(3*x1 + 7*x2 <= 25, "c2")
m.optimize()</pre>
```

Solver output for a simple model

```
Gurobi Optimizer version 9.5.2 build v9.5.2rc0 (linux64)
Thread count: 24 physical cores, 48 logical processors, using up to 24 threads
Optimize a model with 2 rows, 2 columns and 4 nonzeros
Model fingerprint: 0x48b07709
Variable types: 0 continuous, 2 integer (0 binary)
Coefficient statistics:
 Matrix range [1e+00, 7e+00]
 Objective range [5e+00, 8e+00]
 Bounds range [0e+00, 0e+00]
 RHS range [5e+00, 2e+01]
Found heuristic solution: objective 25.0000000
Presolve time: 0.00s
Presolved: 2 rows, 2 columns, 4 nonzeros
Variable types: 0 continuous. 2 integer (0 binary)
Found heuristic solution: objective 28.0000000
Root relaxation: objective 3.100000e+01, 2 iterations, 0.00 seconds (0.00 work units)
   Nodes | Current Node | Objective Bounds
                                                                 Work
Expl Unexpl | Obj Depth IntInf | Incumbent BestBd Gap | It/Node Time
                                31.0000000 31.00000 0.00%
Explored 1 nodes (2 simplex iterations) in 0.01 seconds (0.00 work units)
Thread count was 24 (of 48 available processors)
Solution count 3: 31 28 25
Optimal solution found (tolerance 1.00e-04)
Best objective 3.1000000000000e+01, best bound 3.10000000000e+01, gap 0.0000%
```

FX Delta Margin

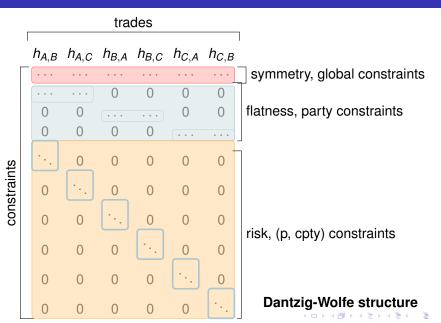
- 25 parties
- 30 currencies
- cleared and uncleared Non Deliverable Forwards
- 1 maturity (short dated)
- $\sim 18,000$ variables
- $\bullet \sim 40,000$ constraints
 - pairwise pointwise risk (linear inequality)
 - pairwise IM increase (convex inequality)
 - notional efficiency (convex inequality)
 - symmetry (linear equality)
 - flatness (linear equality)
 - lot sizes (round notionals to nearest million) (integer)
- 1 convex objective : SIMM + Cleared IM

FX Delta Margin - Numerical Complexity

- inner-most step is Newton step
- inverting $\nabla^2 f$ is the limiting step
- matrix inversion $\sim n^3$ where $n \sim 40,000 \ (10^{13} \ \text{FLOPS})$
- in fact we can do far better than this
 - positive semi definite

 Choleski Factorization
 - sparsity (≪ 0.1% of matrix is non-zero)
 - structure
 - small number of constraints bind multiple trades
 - vast majority (36,000) of constraints are risk constraints
 - each NDF trade only has exposure to 1 risk factor, implying a (block) diagonal (or banded) matrix

Block Matrix Structure



Nearly Parallel Risk

2 identical trades with exposure, 3E and E to 2 risk factors. Scaling everything by 3E can lead to unstable solutions

- $\begin{bmatrix} 1 & 1 \\ \frac{1}{3} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{1}{3} \end{bmatrix}$ has infinite number of solutions $y_1 = 1 x_1$
- $\begin{bmatrix} 1 & 1 \\ 0.3333 & 0.333 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.333 \end{bmatrix}$ has a single solution (0,1)
- $\begin{bmatrix} 1 & 1 \\ 0.3333 & 0.333 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.3333 \end{bmatrix}$ has a single solution (1,0)
- $\begin{bmatrix} 1 & 1 \\ 0.3333 & 0.333 \end{bmatrix} \begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0.3 \end{bmatrix}$ has a single solution (-110, 111) (infeasible if $x_i \ge 0$)

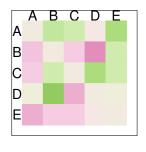
FX Delta Margin

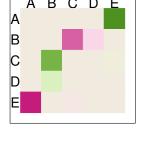
Step I : solve the continuous problem

```
Threads: 48 physical cores, 96 logical processors, 32 threads
Optimize a model with 114127 rows, 104378 columns
and 618202 nonzeros
Model fingerprint: 0xc3d79de8
Model has 661 quadratic constraints
Coefficient statistics:
Matrix range [4e-04, 1e+01]
QMatrix range [3e-01, 1e+00]
Objective range [1e-02, 1e+00]
Bounds range [1e-05, 2e+04]
RHS range [1e-05, 6e+03]
Presolve removed 62099 rows and 55441 columns
Presolve time: 0.38s
Presolved: 53358 rows, 49577 columns, 473486 nonzeros
```

FX Delta Margin (5 parties)

5 party system, 1 risk factor, no constraints





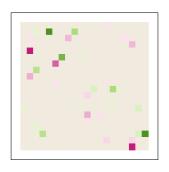
initial risk

optimised risk

risk on each party is netted. Parties have *either* short or long positions, never both

FX Delta Margin (20 parties)

20 party system, 1 risk factor, no constraints

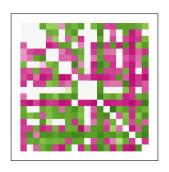


initial risk

optimised risk

FX Delta Margin (Reality)

A real system with 20 parties and real constraints



initial risk

optimised risk

IR Margin Optimization

- 15 parties
- 3 currencies (USD, EUR, GBP)
- swaptions and cleared swaps
- multiple expiries and maturities
- 5000 variables, 10,000 constraints
- each trade has exposure to multiple risk factors (eg swap expiring in 12 years is exposed to 10Y Swap Rate and 20Y Swap Rate)

Other considerations

- feasibility (does the solution satisfy all constraints)
- optimality (does it find a good IM saving)
- nice
 - round numbers
 - small numbers of trades
 - trade packages
 - centrally cleared vs bilateral
- fair

FX Delta Margin - Rounding

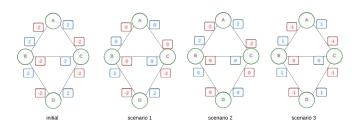
MIP problem so remove as many variables and constraints as possible first

```
and 116685 nonzeros
Model fingerprint: Oxba7bdcd2
Variable types: 28935 continuous, 9750 integer (0 binary)
Presolved: 6068 rows, 5935 columns, 18230 nonzeros
Variable types: 2364 continuous, 3571 integer (30 binary)
Root relaxation: objective 3.348605e+03, 6049 iterations,
0.13 seconds
```

Optimize a model with 49083 rows, 38685 columns

Explored 5211 nodes (149715 iterations) in 57.36 seconds Best objective 8.262033036720e+03

Fairness

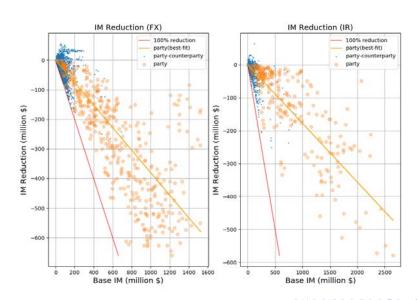


Party	Scenario 1	Scenario 2	Scenario 3	Single Party Best
Α	4	0	2	4
В	4	4	4	4
С	4	4	4	4
D	0	4	2	4

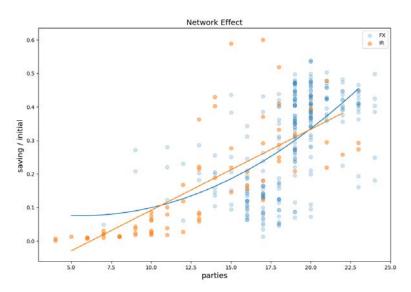
3 ways to achieve the same overall margin saving in a 4 party system

2-step algorithm: compute best possible for each party and then solve $\min \sum_p (IM_p - IM_p^{best})^2$

Observed Margin Savings



Network Effect



Summary

- Value at Risk and Expected Shortfall are risk measures that describe in a single number the riskiness of a financial portfolio
- Over the Counter Derivatives can be centrally cleared via a Central Clearing Counterparty or bilateral
- trading derivatives creates counterparty risk which can be mitigated by the collection of Variation Margin and Initial Margin
- Optimization of Initial Margin within a network of financial participants helps to reduce counterparty risk
- IM Optimization can be achieved via well understood constrained convex optimization numerical methods.
- Numerical Issues have a significant impact on the difficulty
- Interesting problems arise from making the solution Nice and Fair as well as Feasible and Optimal

Further Reading

Steven Boyd and Lieven Vandenberghe (2004) **Convex Optimization** Cambridge University Press

John Hull (2023) **The XVA Challenge** (4th edition) *Wiley*John Hull (2023) **Risk Management and Financial Institutions** (6th edition) emphWiley

Artzner, P., F. Delbaen, J-M. Eber and D.Heath (2022) **Coherent Measures of Risk** *Mathematical Finance* 9(3), 203 – 228

https://www.ise.ufl.edu/uryasev/files/2011/11/CVaR1_JOR.pdf Optimization of Conditional Value at Risk

https://www.bis.org/bcbs/publ/d317.pdf Basel III regulatory framework for initial margin for non centrally cleared derivatives

https://www.isda.org/a/b4ugE/ISDA-SIMM_v2.6_PUBLIC.pdf ISDA SIMM 2.6 https://people.math.ethz.ch/~embrecht/ftp/Seven_Proofs.pdf Seven proofs of

the subadditivity of Expected Shortfall

 $\verb|https://people.orie.cornell.edu/gennady/techreports/VaRsubadd.pdf|$

Subadditivity Re-Examined: the Case for Value-at-Risk

https://www.isda.org/a/KV9EE/

 ${\tt Margin-Requirements-for-Noncleared Derivatives-April-2018-update.pdf}$

Margin requirements for non cleared derivatives

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.