Stochastic Differential Equations

MIT 18.642

Dr. Kempthorne

Fall 2024

Black-Scholes Differential Equation

Setup

- $\{P_t, t \geq 0\}$ asset price follows geometric Brownian Motion $dP_t = P_t \mu dt + \sigma P_t dB_t$
- $\{G_t = G(t, P_t), t \ge 0\}$ price of derivative contingent on P_t . (e.g., call option)

By Ito's Lemma

$$dG_t = \left(\frac{\partial G}{\partial P}\mu P_t + \frac{\partial G}{\partial t} + \frac{1}{2}\frac{\partial^2 G}{\partial P^2}\sigma^2 P_t^2\right)dt + \frac{\partial G}{\partial P}\sigma P_t dB_t$$

Discretization of asset price and derivative price

$$\Delta P_t = \mu P_t \Delta t + \sigma P_t \Delta B_t$$

$$\Delta G_t = \left(\frac{\partial G}{\partial P} \mu P_t + \frac{\partial G}{\partial t} + \frac{1}{2} \frac{\partial^2 G}{\partial P^2} \sigma^2 P_t^2 \right) \Delta t + \frac{\partial G}{\partial P} \sigma P_t \Delta B_t$$

Construct portfolio V_t to eliminate the Brownian Motion ΔB_t Short (sell) one derivative and Buy $\frac{\partial G}{\partial P}$ shares of asset $V_t = -G_t + \frac{\partial G}{\partial P}(t, P_t)P_t$ (portfolio value)

$$\implies \Delta V_t = \left(-\frac{\partial \mathcal{G}}{\partial t} - \frac{1}{2} \frac{\partial^2 \mathcal{G}}{\partial P^2} \sigma^2 P_t^2 \right) \Delta t \qquad \text{(no } \Delta B_t \text{ component)}$$

Black-Scholes Differential Equation

Portfolio V_t that eliminates Brownian Motion ΔB_t

$$\begin{split} &V_t = -G_t + \frac{\partial G}{\partial P}(t, P_t) P_t \\ &\Delta V_t = \left(-\frac{\partial G}{\partial t} - \frac{1}{2} \frac{\partial^2 G}{\partial P^2} \sigma^2 P_t^2 \right) \Delta t \qquad \text{(no } \Delta B_t \text{ component)} \end{split}$$

ullet V_t is risk-free and must earn risk-less interest rate r

$$\Delta V_t = V_t \times (r\Delta t)$$

• Equating two expressions for ΔV_t :

$$\left(-\frac{\partial G}{\partial t} - \frac{1}{2} \frac{\partial^2 G}{\partial P^2} \sigma^2 P_t^2\right) \Delta t = V_t \times (r \Delta t)
= \left(-G_t + \frac{\partial G}{\partial P} P_t\right) r \Delta t$$

⇒ "The Black-Scholes Differential Equation"

$$\frac{\partial G}{\partial t} + rP_t \frac{\partial G}{\partial P} + \frac{1}{2} \frac{\partial^2 G}{\partial P^2} \sigma^2 P_t^2 = rG_t$$

Black-Scholes Differential Equation

Boundary Conditions Vary by Derivative:

- European call option: $G_T = max(P_T K, 0)$ where T is time to expiration and K is strike price
- European put option: $G_T = max(0, K P_T)$.

Heat Equation

Definition: Heat Equation Let $u(x,t): R \times R^+ \to R$ be real function of space (x) and time (t).

$$\frac{\partial u}{\partial t} = \lambda \frac{\partial^2 u}{\partial x^2}.$$

Also called "Diffusion Equation"

Example 1.1 u(x, t) = temperature in long, thin bar of uniform material; perfectly insulated so temperature only varies with distance x along the bar and with time t.

• Goal: solve initial value problem, given by $u(0,x) = u_0(x)$, for $-\infty < x < \infty$ for some specific function u_0 .

Heat Equation: Properties of Solutions

Observation 1.

• Solutions are linear: if $u_1(x,t)$ and $u_2(x,t)$ satisfy the heat equation, then

$$u_1(x,t)+u_2(x,t)$$

also satisfies the heat equation.

- For any collection of solutions $u_s(x,t)$ indexed by $s \in R$, $\int_{-\infty}^{\infty} u_s(x,t) \cdot c(s) ds$ is also a solution.
- Strategy: solve general problem with superimposed solutions to easy problems.

Heat Equation: Simple Solution

Observation 2. Simplest initial value problem

- Specify u(x,0) as a Dirac delta function at x=0 $u(x,0)=\delta(x)$: $\delta(x)=0$, for $x\neq 0$ and $\int_x \delta(x) dx=1$.
- Well-known solution:

$$u_{\delta}(x,t) = \frac{1}{\sqrt{2\pi \times (2\lambda t)}} e^{-\frac{1}{2}x^2/2\lambda t}$$

(pdf of Normal distribution with mean 0 and variance $2\lambda t$)

- $u_{\delta}(x,t) \longrightarrow \delta(x)$ as $t \to 0$.
- For fixed t>0 the solution is the probability density function of a normal random variable with mean 0 and variance $2\lambda t$. Simple case: $\lambda=1/2$ (change time scale or x scale).

Heat Equation: Solution for General Initial Conditions

Observation 3. Consider solving the heat equation for any function $u_0(x) = u(x, 0)$. $(\lambda = 1/2 \text{ case})$

Note that

$$u_0(x) = \int_{-\infty}^{\infty} \delta(x-s)u_0(s)ds$$

• Superimpose the solutions from before:

$$u(x,t) = \int_{-\infty}^{\infty} u_{\delta}(x-s,t) \cdot u_{0}(s) ds$$

=
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{1}{2}(x-s)^{2}/t} \cdot u_{0}(s) ds.$$

• If this integration exists (depending on u_0) then $\frac{\partial u}{\partial t}(x,t) = \int_{-\infty}^{\infty} \frac{\partial u_{\delta}}{\partial t}(x-s,t) \cdot u_0(s) ds$

and

$$\frac{\partial^2 u}{\partial x^2}(x,t) = \int_{-\infty}^{\infty} \frac{\partial^2 u_{\delta}}{\partial x^2}(x-s,t) \cdot u_0(s) ds$$

 $\implies u(x,t)$ satisfies the heat equation too.

Example: Consider $u_0(x)$ as indicator: 1(a < x < b)

Heat Equation: Gaussian/Normal Structure of Solutions

Observation 3. (continued)

Recap:

$$u(x,t) = \int_{-\infty}^{\infty} u_{\delta}(x-s,t) \cdot u_{0}(s) ds$$

=
$$\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}} e^{-\frac{1}{2}(x-s)^{2}/t} \cdot u_{0}(s) ds.$$

Consider $u_0(x)$ as indicator: 1(a < x < b)

- Integrand of u(x, t) is $p(s) \times u_0(s)$ where p(s) is the pdf of a Normal(x, t) distribution.
- $\{X_t, t \geq 0\}$: Brownian motion with zero drift, and variance rate (1) and $X_0 = x$ $X_t = x + \int_0^t \sqrt{1} dB_s$ $X_t \mid X_0 = x \sim N(x, t)$

•
$$u(x,t) = E_{X_t}[1(a < X_t < b)] = P(X_t \in (a,b) \mid X_0 = x)$$

= $\Phi((b-x)/\sqrt{t}) - \Phi((a-x)/\sqrt{t})$

Heat Equation

Solution by Similarity/Invariance

- Consider linear change of time and space variables:
- $\tau = \alpha t$ and $y = \beta x$.
- Define $v(y, \tau) = u(x, t)$.
- Apply the chain rule: $u_t = \alpha v_\tau$, $u_x = \beta v_y$ and $u_{xx} = \beta^2 v_{yy}$. PDE: $u_t = \lambda u_{xx} \longrightarrow \alpha v_\tau = \beta^2 \lambda v_{yy}$.
- If $\alpha = \beta^2$, then $v_{\tau} = \lambda v_{yy}$. If $t \to \alpha t$ and $x \to \sqrt{\alpha} x$ then v solves the original problem.
- Strategy: look for solutions that are invariant under $t \to \alpha t$ and $x \to \sqrt{\alpha} x$

l.e.,

$$\begin{array}{l} u(x,t)=u(\sqrt{\alpha}x,\alpha t)\\ \text{Choose }\alpha=\frac{1}{t} \text{ gives } u(x,t)=u(x/\sqrt{t},1)=h(x/\sqrt{t}). \end{array}$$

Heat Equation: Solution by

Substitute $h(x/\sqrt{t})$ for u(x,t) and the Heat Equation becomes

$$(-h'(x/\sqrt{t})\frac{x}{2t^{3/2}} = \lambda h''(x/\sqrt{t})\frac{1}{t}$$

• Substitute $y = x/\sqrt{t}$

$$-h'(y)\frac{y}{2} = \lambda h''(y)$$
 or $\frac{h''(y)}{h'(y)} = -\frac{y}{2\lambda}$

• Equivalent expression: $[\log h'(y)]' = -\frac{y}{2\lambda}$

• Integrate for solution to
$$h'$$

 $h'(v) = ce^{-y^2/4\lambda}$

• Integrate again for solution to h(y)

$$h(y) = \Phi(y/\sqrt{2\lambda})$$
 cdf of Gaussian $(0,2\lambda)$

- Substitute $y = x/\sqrt{t}$ and get $u(x, t) = \Phi(x/\sqrt{2\lambda t})$.
- Initial condition for this solution:

$$u(x,0) = \lim_{t \to 0} u(x,t) = \begin{cases} 1 & \text{if } x > 0 \\ 1/2 & \text{if } x = 0 \\ 0 & \text{if } x < 0 \end{cases}$$

Heat Equation

Linear Combinations of Solutions

• $u(x,t) = \Phi((x-a)/\sqrt{2\lambda t})$ is a solution for initial condition:

$$u(x,0) = \lim_{t \to 0} u(x,t) = \begin{cases} 1 & \text{if } x > a \\ 1/2 & \text{if } x = a \\ 0 & \text{if } x < a \end{cases}$$

• $u(x,t) = \Phi((x-b)/\sqrt{2\lambda t})$ is a solution for initial condition:

$$u(x,0) = \lim_{t \to 0} u(x,t) = \begin{cases} 1 & \text{if } x > b \\ 1/2 & \text{if } x = b \\ 0 & \text{if } x < b \end{cases}$$

• $u(x,t) = \Phi((x-a)/\sqrt{2\lambda t}) - \Phi((x-b)/\sqrt{2\lambda t})$ is a solution for initial condition:

$$u(x,0) = \lim_{t \to 0} u(x,t) = \begin{cases} 1 & \text{if} \quad a < x < b \\ 1/2 & \text{if} \quad x = a \text{ or } x = b \\ 0 & \text{if} \quad x \notin [a,b] \end{cases}$$

Note: easy(!) solutions for any step function u(x, 0).

Stochastic Differential Equations (SDEs)

SDE:
$$dX(t) = \mu(t, X(t))dt + \sigma(t, X(t))dB(t)$$
, where

- $\{B(t), t \ge 0\}$ standard Brownian motion
- $\mu(t,x)$ and $\sigma(t,x)$, are functions of space (x) and time (t)

A process X(t) is a solution if it satisfies (for all $t \ge 0$) $X(t) = \int_0^t \mu(s, X(s)) ds + \int_0^t \sigma(s, X(s)) dB(s).$

Theorem 2.1 (Existence and uniqueness) If the coefficients of the stochastic differential equation (SDE) with $X(0) = x_0$, and $0 \le t \le T$, satisfy the following conditions

space-variable Lipschitz condition

$$|\mu(t,x) - \mu(t,y)|^2 + |\sigma(t,x) - \sigma(t,y)|^2 \le K|x-y|^2$$

spatial growth condition

$$|\mu(t,x)|^2 + |\sigma(t,x)|^2 \le K(1+|x|^2)$$

then there is a continuous adapted solution X(t) such that $\sup_{0 \le t \le T} E[X_t^2] < \infty$. (uniformly bounded in $L^2(dP)$)

Stochastic Differential equations (SDEs)

Theorem 2.1 (Existence and uniqueness) (continued)

Moreover, if X_t and Y_t are both continuous L^2 bounded solutions of the SDE, then

$$P(X_t = Y_t, \text{ for all } t \in [0, T]) = 1.$$

Conclusion: Many SDEs have solutions which are essentially unique.

Coefficient Matching Method For Solving SDEs:

Consider the SDE for Geometric Brownian Motion

$$dX(t) = \mu X(t)dt + \sigma X(t)dB(t)$$
, with $X(0) = x_0 > 0$.

- Postulate solution: X(t) = f(t, B(t)) for some function $f \in C^{1,2}$.
- For such a solution:

$$dX(t) = \left(\frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}\right) dt + \frac{\partial f}{\partial x} dB(t),$$

$$\implies \mu f = \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}, \quad \text{and} \quad \sigma f = \frac{\partial f}{\partial x}$$

We can solve successively:

- A solution to $\sigma f = \frac{\partial f}{\partial x}$ is given by $f(t,x) = e^{\sigma x + g(t)}$
- Using this in the first equation: $\mu f = \frac{\partial f}{\partial t} + \frac{1}{2} \frac{\partial^2 f}{\partial x^2}$ $\mu f = g'(t)f + \frac{\sigma^2}{2}f.$

Therefore, $g'(t) = \mu - \frac{\sigma^2}{2}$

Which gives

$$f(t,x) = x_0 e^{\sigma x + (\mu - \sigma^2/2)t}.$$

Thus

$$X(t) = f(t, B(t)) = x_0 e^{(\mu - \sigma^2/2)t + \sigma B(t)}.$$

$$X(t)$$
 has a Lognormal (μ_*, σ_*) Distribution

$$\mu_* = (\mu - \sigma^2/2)t$$
 and $\sigma_* = \sigma t$

$$E[X(t)] = x_0 e^{(\mu - \frac{\sigma^2}{2})t} \times E[e^{\sigma B(t)}] = x_0 e^{\mu t}$$

Paradox(?) If $0 < \mu < \sigma^2/2$ then:

$$E[X(t)] = x_0 e^{\mu t} \to \infty$$
 while $P[X(t) < c] \to 1$, for any fixed $c > 0$.

Ornstein-Uhlenbeck Processes

Ornstein Uhlenbeck Process: Stochastic differential equation $dX_t = -\alpha(X_t - \mu)dt + \sigma dB_t$ with $X_0 = x_0$. with parameters: $\alpha > 0$, $\sigma > 0$ and $-\infty < \mu < \infty$.

- Drift term: $-\alpha(X_t \mu)$, negative when $(X_t > \mu)$ positive when $(X_t < \mu)$.
- Local variability: σ (factor of dB_t) is constant

Applications

- Velocity of gas molecule ($\mu=$ average velocity of molecules) Ornstein and Uhlenbeck (1931); mean-reversion toward μ
- Vasicek model of interest rates
 - $\mu = \text{target short-term rate of Federal Reserve, or}$
 - ullet $\mu=$ equilibrium risk-free interest rate of an economy

Modeling Reversion to Mean/Average Level

Ornstein-Uhlenbeck Process: Product-Process Solution

Consider SDE with
$$\mu = 0$$

$$dX_t = -\alpha X_t dt + \sigma dB_t$$
 with $X_0 = x_0$.

Possible Solution:
$$X_t = a(t) \left(x_0 + \int_0^t b(s) dB_s \right)$$
,

where a(t) and b(s) are differentiable functions.

Differential of X_t :

$$dX_t = a'(t) \left(x_0 + \int_0^t b(s) dB_s \right) dt + a(t)b(t) dB_t$$

= $\left[\frac{a'(t)}{a(t)} \right] X_t dt + [a(t)b(t)] dB_t$

Coefficient Matching:

$$\left[rac{\mathsf{a}'(t)}{\mathsf{a}(t)}
ight] = -lpha$$
 and $\mathsf{a}(t)b(t) = \sigma$

- $a(0) = 1 \Longrightarrow a(t) = e^{-\alpha t}$.
- $\Longrightarrow b(t) = [a(t)]^{-1}\sigma = \sigma e^{\alpha t}$.

$$X_t = e^{-\alpha t} \left(x_0 + \int_0^t \sigma e^{\alpha s} dB_s \right) = x_0 e^{-\alpha t} + \sigma \int_0^t e^{-\alpha (t-s)} dB_s$$

SDE:
$$dX_t = -\alpha X_t dt + \sigma dB_t$$
 with $X_0 = x_0$.

Solution:
$$X_t = x_0 e^{-\alpha t} + \sigma \int_0^t e^{-\alpha(t-s)} dB_s$$

Properties:

•
$$E[X_t] = x_0 e^{-\alpha t}$$
: $\longrightarrow 0$ as $t \to \infty$

•
$$Var[X_t] = \sigma^2 \int_0^t e^{-2\alpha(t-s)} ds = \frac{\sigma^2}{2\alpha} \left(1 - e^{-2\alpha t}\right).$$
 $\longrightarrow \frac{\sigma^2}{2\alpha} \text{ as } t \to \infty.$

- As $t \to \infty X_t \to N(0, \sigma^2/2\alpha)$.
- If $x_0 \sim N(0, \sigma^2/2\alpha)$ then so is X_t for all t > 0.

Solution for
$$\mu \neq 0$$

$$X_t = \mu + (x_0 - \mu)e^{-\alpha t} + \sigma \int_0^t e^{-\alpha(t-s)} dB_s$$

Systems of SDEs

Vector-Representation of Multiple SDEs

$$d\vec{X}_t = \vec{\mu}(t, \vec{X}_t)dt + \sigma(t, \vec{X}_t)d\vec{B}_t$$
, with $\vec{X}_0 = \vec{x}_0$.

where

$$ec{\mu}(t,ec{X}_t) = \left[egin{array}{c} \mu_1(t,ec{X}_t) \ \mu_2(t,ec{X}_t) \ dots \ \mu_m(t,ec{X}_t) \end{array}
ight] \qquad dec{B}_t = \left[egin{array}{c} dB_t^{(1)} \ dB_t^{(2)} \ dots \ dB_t^{(m)} \end{array}
ight]$$

$$\sigma(t, \vec{X}_t) = \begin{bmatrix} \sigma_{11}(t, \vec{X}_t) & \sigma_{12}(t, \vec{X}_t) & \cdots & \sigma_{1m}(t, \vec{X}_t) \\ \sigma_{21}(t, \vec{X}_t) & \sigma_{22}(t, \vec{X}_t) & \cdots & \sigma_{2m}(t, \vec{X}_t) \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{m1}(t, \vec{X}_t) & \sigma_{m2}(t, \vec{X}_t) & \cdots & \sigma_{mm}(t, \vec{X}_t) \end{bmatrix}$$

 $\{B_t^{(1)}, t \geq 0\}, \, \dots, \, \{B_t^{(m)}, t \geq 0\}$ (independent Br. Motions)

Systems of SDEs

Position and Velocity

- Position: $\{X_t, t \geq 0\}$
- Velocity: $\{V_t, t \ge 0\}$

SDEs With Mean-Reverting Velocity

 $\implies d\vec{X}_t = \vec{u}(t, \vec{X}_t)dt + \sigma(t, \vec{X}_t)d\vec{B}_t$

$$dX_t = V_t dt + \sigma_1 dB_t^{(1)}$$

$$dV_t = -\alpha (V_t - \mu) dt + \sigma_2 dB_t^{(2)}$$

With
$$\vec{X}_t = \begin{bmatrix} X_t \\ V_t \end{bmatrix}$$
, $\vec{\mu}(t, \vec{X}_t) = \begin{bmatrix} V_t \\ -\alpha(V_t - \mu) \end{bmatrix}$, and $\sigma(t, \vec{X}_t) = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$

Numerical Methods

Numerical Methods

- Finite-difference methods
- Monte-Carlo methods
- Tree methods

References:

- B. Oksendal, Stochastic Differential Equations: An introduction with Applications
- P. Wilmott, S. Howison, J. Dewynne, The Mathematics of Financial Derivatives
- J.M. Steele, Stochastic Calculus and Financial Applications
- J. Hull, Options, Futures, and Other Derivatives

MIT OpenCourseWare https://ocw.mit.edu

18.642 Topics in Mathematics with Applications in Finance Fall 2024

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.