Introduction

These notes are based on the class as it was run for the second time in January 2023, taught by Professors Alan
Edelman and Steven G. Johnson at MIT. The previous version of this course, run in January 2022, can be found
on OCW here.

Both Professors Edelman and Johnson use he/him pronouns and are in the Department of Mathematics at MIT;
Prof. Edelman is also a Professor in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL)
running the Julia lab, while Prof. Johnson is also a Professor in the Department of Physics.

Here is a description of the course.:

We all know that typical calculus course sequences begin with univariate and vector calculus, respec-
tively. Modern applications such as machine learning and large-scale optimization require the next big

step, “matrix calculus” and calculus on arbitrary vector spaces.

This class covers a coherent approach to matrix calculus showing techniques that allow you to think of
a matrix holistically (not just as an array of scalars), generalize and compute derivatives of important
matrix factorizations and many other complicated-looking operations, and understand how differen-
tiation formulas must be re-imagined in large-scale computing. We will discuss “reverse” (“adjoint”,
“backpropagation”) differentiation and how modern automatic differentiation is more computer science

than calculus (it is neither symbolic formulas nor finite differences).

The class involved numerous example numerical computations using the Julia language, which you can install
on your own computer following these instructions. The material for this class is also located on GitHub at

https://github.com/mitmath /matrixcalc.

https://dspace.mit.edu/handle/1721.1/155680
https://github.com/mitmath/julia-mit#installing-julia-and-ijulia-on-your-own-computer
https://github.com/mitmath/matrixcalc

1 Overview and Motivation

Firstly, where does matrix calculus fit into the MIT course catalog? Well, there are 18.01 (Single-Variable Calculus)
and 18.02 (Vector Calculus) that students are required to take at MIT. But it seems as though this sequence of

material is being cut off arbitrarily:
Scalar — Vector — Matrices — Higher-Order Arrays?

After all, this is how the sequence is portrayed in many computer programming languages, including Julia! Why
should calculus stop with vectors?

In the last decade, linear algebra has taken on larger and larger importance in numerous areas, such as machine
learning, statistics, engineering, etc. In this sense, linear algebra has gradually taken over a much larger part of
today’s tools for lots of areas of study—mow everybody needs linear algebra. So it makes sense that we would
want to do calculus on these higher-order arrays, and it won’t be a simple/obvious generalization (for instance,
A% 5 2A for non-scalar matrices A).

More generally, the subjects of differentiation and sensitivity analysis are much deeper than one might suspect
from the simple rules learned in first- or second-semester calculus. Differentiating functions whose inputs and/or
outputs are in more complicated vector spaces (e.g. matrices, functions, or more) is one part of this subject. Another
topic is the efficient evaluation of derivatives of functions involving very complicated calculations, from neural
networks to huge engineering simulations—this leads to the topic of “adjoint” or “reverse-mode” differentiation,
also known as “backpropagation.” Automatic differentiation (AD) of computer programs by compilers is another
surprising topic, in which the computer does something very different from the typical human process of first writing
out an explicit symbolic formula and then passing the chain rule through it. These are only a few examples: the key
point is that differentiation is more complicated than you may realize, and that these complexities are increasingly
relevant for a wide variety of applications.

Let’s quickly talk about some of these applications.

1.1 Applications

Applications: Machine learning

Machine learning has numerous buzzwords associated with it, including but not limited to: parameter optimization,
stochastic gradient descent, automatic differentiation, and backpropagation. In this whole collage you can see a
fraction of how matrix calculus applies to machine learning. It is recommended that you look into some of these

topics yourself if you are interested.

Applications: Physical modeling

Large physical simulations, such as engineering-design problems, are increasingly characterized by huge numbers
of parameters, and the derivatives of simulation outputs with respect to these parameters is crucial in order to
evaluate sensitivity to uncertainties as well as to apply large-scale optimization.

For example, the shape of an airplane wing might be characterized by thousands of parameters, and if you can
compute the derivative of the drag force (from a large fluid-flow simulation) with respect to these parameters then
you could optimize the wing shape to minimize the drag for a given lift or other constraints.

An extreme version of such parameterization is known as “topology optimization,” in which the material at “every

point” in space is potentially a degree of freedom, and optimizing over these parameters can discover not only a

optimal shape but an optimal topology (how materials are connected in space, e.g. how many holes are present).
For example, topology optimization has been applied in mechanical engineering to design the cross sections of
airplane wings, artificial hips, and more into a complicated lattice of metal struts (e.g. minimizing weight for a
given strength).

Besides engineering design, complicated differentiation problems arise in fitting unknown parameters of a
model to experimental data, and also in evaluating uncertainties in the outputs of models with imprecise pa-
rameters/inputs. This is closely related to regression problems in statistics, as discussed below, except that here

the model might be a giant set of differential equations with some unknown parameters.

Applications: Data science and multivariable statistics

In multivariate statistics, models are often framed in terms of matrix inputs and outputs (or even more complicated
objects such as tensors). For example, a “simple” linear multivariate matrix model might be Y (X) = X B+U, where
B is an unknown matrix of coefficients (to be determined by some form of fit /regression) and U is unknown matrix
of random noise (that prevents the model from exactly fitting the data). Regression then involves minimizing
some function of the error U(B) = Y — X B between the model X B and data Y; for example, a matrix norm
|U||% = trUTU, a determinant det UTU, or more complicated functions. Estimating the best-fit coefficients B,
analyzing uncertainties, and many other statistical analyses require differentiating such functions with respect to
B or other parameters. A recent review article on this topic is Liu et al. (2022): “Matrix differential calculus with

applications in the multivariate linear model and its diagnostics” (https://doi.org/10.1016/j.sctalk.2023.100274).

Applications: Automatic differentiation

Typical differential calculus classes are based on symbolic calculus, with students essentially learning to do what
Mathematica or Wolfram Alpha can do. Even if you are using a computer to take derivatives symbolically, to use
this effectively you need to understand what is going on beneath the hood. But while, similarly, some numerics
may show up for a small portion of this class (such as to approximate a derivative using the difference quotient),
today’s automatic differentiation is neither of those two things. It is more in the field of the computer science topic
of compiler technology than mathematics. However, the underlying mathematics of automatic differentiation is
interesting, and we will learn about this in this class!

Even approximate computer differentiation is more complicated than you might expect. For single-variable
functions f(z), derivatives are defined as the limit of a difference [f(x + dz) — f(x)]/dx as dxz — 0. A crude
“finite-difference” approximation is simply to approximate f’(z) by this formula for a small dx, but this turns out
to raise many interesting issues involving balancing truncation and roundoff errors, higher-order approximations,

and numerical extrapolation.

1.2 First Derivatives

The derivative of a function of one variable is itself a function of one variable— it simply is (roughly) defined as the
linearization of a function. Le., it is of the form (f(z) — f(x0)) = f'(x0)(xz — xp). In this sense, “everything is easy”
with scalar functions of scalars (by which we mean, functions that take in one number and spit out one number).

There are occasionally other notations used for this linearization:
o by = f'(z)dx,
° dy = f/(.T)d:L’7

* (¥ —vo) = f'(z0)(x — x0),

https://doi.org/10.1016/j.sctalk.2023.100274

o and df = f'(x)dx
This last one will be the preferred of the above for this class. One can think of dz and dy as “really small numbers.”
In mathematics, they are called infinitesimals, defined rigorously via taking limits. Note that here we do not want
to divide by dx. While this is completely fine to do with scalars, once we get to vectors and matrices you can’t
always divide!

The numerics of such derivatives are simple enough to play around with. For instance, consider the function

f(x) = 22 and the point (xg, f(x0)) = (3,9). Then, we have the following numerical values near (3,9):

£(3.0001) = 9.00060001
£(3.00001) = 9.0000600001
£(3.000001) = 9.000006000001
£(3.0000001) = 9.00000060000001.

Here, the bolded digits on the left are Az and the bolded digits on the right are Ay. Notice that Ay = 6Ax.

Hence, we have that
fB4+Az)=9+Ay=9+6Az = f(3+ Az)— f(3) = 6Az =~ f'(3)Ax.

Therefore, we have that the linearization of 2% at x = 3 is the function f(x) — f(3) ~ 6(x — 3).

We now leave the world of scalar calculus and enter the world of vector/matrix calculus! Professor Edelman
invites us to think about matrices holistically—not just as a table of numbers.

The notion of linearizing your function will conceptually carry over as we define the derivative of functions which
take in/spit out more than one number. Of course, this means that the derivative will have a different “shape” than
a single number. Here is a table on the shape of the first derivative. The inputs of the function are given on the

left hand side of the table, and the outputs of the function are given across the top.

input | and output — | scalar vector matrix
scalar scalar vector (for instance, velocity) matrix
vector gradient = (column) vector | matrix (called the Jacobian matrix) | higher order array
matrix matrix higher order array higher order array

You will ultimately learn how to do any of these in great detail eventually in this class! The purpose of this

table is to plant the notion of differentials as linearization. Let’s look at an example.

Example 1

Let f(x) = 2Tz, where z is a 2 x 1 matrix and the output is thus a 1 x 1 matrix. Confirm that 2z dz is indeed

T
the differential of f at zp = (3 4) .

Firstly, let’s compute f(zg):
f(xo) = atxg = 3% + 42 = 25.

Then, suppose dx = [.001,.002]. Then, we would have that

f(z +dz) = (3.001)2 + (4.002)* = 25.022005.

https://en.wikipedia.org/wiki/Infinitesimal

T
Then, notice that 2zl dx = 2 (3 4) dx = .022. Hence, we have that
f(zo 4 dx) — f(x0) = 2zl dx = .022.

As we will see right now, the 2x'dr didn’t come from nowhere!

1.3 Intro: Matrix and Vector Product Rule

For matrices, we in fact still have a product rule! We will discuss this in much more detail in later chapters, but

let’s begin here with a small taste.

Theorem 2 (Differential Product Rule)
Let A, B be two matrices. Then, we have the differential product rule for AB:

d(AB) = (dA)B + A(dB).

By the differential of the matrix A, we think of it as a small (unconstrained) change in the matrix A. Later,

constraints may be places on the allowed perturbations.

Notice however, that (by our table) the derivative of a matrix is a matrix! So generally speaking, the products will
not commute.

If = is a vector, then by the differential product rule we have
d(zTz) = (daT)x + =7 (d).
However, notice that this is a dot product, and dot products commute (since > a; - b; = >_b; - a;), we have that
d(z"z) = (22)" da.

Remark 3. The way the product rule works for vectors as matrices is that transposes “go for the ride.” See the

next example below.

Example 4
By the product rule. we have

1. d(uTv) = (du)Tv + uT (dv) = vTdu + uT dv since dot products commute.

2. d(uvT) = (du)v” + u(dv)?.

Remark 5. The way to prove these sorts of statements can be seen in Section 2.

MIT OpenCourseWare
https://ocw.mit.edu

18.S096 Matrix Calculus for Machine Learning and Beyond
Independent Activities Period (IAP) 2023

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

	cover.pdf
	Blank Page

