
3 Jacobians of Matrix Functions

When we have a function that has matrices as inputs and/or outputs, we have already seen in the previous lectures
that we can still define the derivative as a linear operator by a formula for f ′ mapping a small change in input to
the corresponding small change in output. However, when you first learned linear algebra, probably most linear
operations were represented by matrices multiplying vectors, and it may take a while to get used to thinking of linear
operations more generally. In this chapter, we discuss how it is still possible to represent f ′ by a Jacobian matrix
even for matrix inputs/outputs, and how the most common technique to do this involves matrix “vectorization”
and a new type of matrix operation, a Kronecker product. This gives us another way to think about our f ′

linear operators that is occasionally convenient, but at the same time it is important to become comfortable with
other ways of writing down linear operators too—sometimes, the explicit Jacobian-matrix approach can obscure
key structure, and it is often computationally inefficient as well.

For this section of the notes, we refer to the linked Pluto Notebook for computational demonstrations of this
material in Julia, illustrating multiple views of the derivative of the square A2 of 2× 2 matrices A.

3.1 Derivatives of matrix functions: Linear operators
As we have already emphasized, the derivative f ′ is the linear operator that maps a small change in the input to a
small change in the output. This idea can take an unfamiliar form, however, when applied to functions f(A) that
map matrix inputs A to matrix outputs. For example, we’ve already considered the following functions on square
m×m matrices:

• f(A) = A3, which gives df = f ′(A)[dA] = dAA2 +AdAA+A2 dA.

• f(A) = A−1, which gives df = f ′(A)[dA] = −A−1 dAA−1

Example 20
An even simpler example is the matrix-square function:

f(A) = A2 ,

which by the product rule gives
df = f ′(A)[dA] = dAA+AdA .

You can also work this out explicitly from df = f(A+dA)− f(A) = (A+dA)2−A2, dropping the (dA)2 term.

In all of these examples, f ′(A) is described by a simple formula for f ′(A)[dA] that relates an arbitrary change
dA in A to the change df = f(A+dA)−f(A) in f , to first order. If the differential is distracting you, realize that we
can plug any matrix X we want into this formula, not just an “infinitesimal” change dA, e.g. in our matrix-square
example we have

f ′(A)[X] = XA+AX

for an arbitrary X (a directional derivative, from Sec. 2.2.1). This is linear in X: if we scale or add inputs, it scales
or adds outputs, respectively:

f ′(A)[2X] = 2XA+A 2X = 2(XA+AX) = 2f ′(A)[X] ,
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f ′(A)[X + Y ] = (X + Y )A+A(X + Y ) = XA+ Y A+AX +AY = XA+AX + Y A+AY

= f ′(A)[X] + f ′(A)[Y ] .

This is a perfectly good way to define a linear operation! We are not expressing it here in the familiar form
f ′(A)[X] = (some matrix?)× (X vector?), and that’s okay! A formula like XA+ AX is easy to write down, easy
to understand, and easy to compute with.

But sometimes you still may want to think of f ′ as a single “Jacobian” matrix, using the most familiar language
of linear algebra, and it is possible to do that! If you took a sufficiently abstract linear-algebra course, you may
have learned that any linear operator can be represented by a matrix once you choose a basis for the input and
output vector spaces. Here, however, we will be much more concrete, because there is a conventional “Cartesian”
basis for matrices A called “vectorization”, and in this basis linear operators like AX +XA are particularly easy
to represent in matrix form once we introduce a new type of matrix product that has widespread applications in
“multidimensional” linear algebra.

3.2 A simple example: The two-by-two matrix-square function
To begin with, let’s look in more detail at our matrix-square function

f(A) = A2

for the simple case of 2 × 2 matrices, which are described by only four scalars, so that we can look at every term
in the derivative explicitly. In particular,

Example 21
For a 2× 2 matrix

A =

(
p r

q s

)
,

the matrix-square function is

f(A) = A2 =

(
p r

q s

)(
p r

q s

)
=

(
p2 + qr pr + rs

pq + qs qr + s2

)
.

Written out explicitly in terms of the matrix entries (p, q, r, s) in this way, it is natural to think of our function
as mapping 4 scalar inputs to 4 scalar outputs. That is, we can think of f as equivalent to a “vectorized” function
f̃ : R4 → R4 given by

f̃(


p

q

r

s

) =


p2 + qr

pq + qs

pr + rs

qr + s2

 .

Converting a matrix into a column vector in this way is called vectorization, and is commonly denoted by the
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operation “vec”:

vecA = vec

(
p r

q s

)
=


A1,1 p

A2,1 q

A1,2 r

A2,2 s

 ,

vec f(A) = vec

(
p2 + qr pr + rs

pq + qs qr + s2

)
=


p2 + qr

pq + qs

pr + rs

qr + s2

 .

In terms of vec, our “vectorized” matrix-squaring function f̃ is defined by

f̃(vecA) = vec f(A) = vec(A2) .

More generally,

Definition 22
The vectorization vecA ∈ Rmn of any m×n matrix A ∈ Rm×n is a defined by simply stacking the columns
of A, from left to right, into a column vector vecA. That is, if we denote the n columns of A by m-component
vectors a⃗1, a⃗2, . . . ∈ Rm, then

vecA = vec
(

a⃗1 a⃗2 · · · a⃗n

)
︸ ︷︷ ︸

A∈Rm×n

=


a⃗1

a⃗2
...

a⃗n

 ∈ Rmn

is an mn-component column vector containing all of the entries of A.
On a computer, matrix entries are typically stored in a consecutive sequence of memory locations, which

can be viewed a form of vectorization. In fact, vecA corresponds exactly to what is known as “column-major”
storage, in which the column entries are stored consecutively; this is the default format in Fortran, Matlab, and
Julia, for example, and the venerable Fortran heritage means that column major is widely used in linear-algebra
libraries.

.

Problem 23
The vector vecA corresponds to the coefficients you get when you express the m × n matrix A in a basis of
matrices. What is that basis?

Vectorization turns unfamilar things (like matrix functions and derivatives thereof) into familiar things (like
vector functions and Jacobians or gradients thereof). In that way, it can be a very attractive tool, almost too
attractive—why do “matrix calculus” if you can turn everything back into ordinary multivariable calculus? Vec-
torization has its drawbacks, however: conceptually, it can obscure the underlying mathematical structure (e.g. f̃

above doesn’t look much like a matrix square A2), and computationally this loss of structure can sometimes lead
to severe inefficiencies (e.g. forming huge m2 × m2 Jacobian matrices as discussed below). Overall, we believe
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that the primary way to study matrix functions like this should be to view them as having matrix inputs (A) and
matrix outputs (A2), and that one should likewise generally view the derivatives as linear operators on matrices,
not vectorized versions thereof. However, it is still useful to be familiar with the vectorization viewpoint in order
to have the benefit of an alternative perspective.

3.2.1 The matrix-squaring four-by-four Jacobian matrix

To understand Jacobians of functions (from matrices to matrices), let’s begin by considering a basic question:

Question 24. What is the size of the Jacobian of the matrix-square function?

Well, if we view the matrix squaring function via its vectorized equivalent f̃ , mapping R4 7→ R4 (4-component
column vectors to 4-component column vectors), the Jacobian would be a 4×4 matrix (formed from the derivatives
of each output component with respect to each input component). Now let’s think about a more general square
matrix A: an m×m matrix. If we wanted to find the Jacobian of f(A) = A2, we could do so by the same process
and (symbolically) obtain an m2 ×m2 matrix (since there are m2 inputs, the entries of A, and m2 outputs, the
entries of A2). Explicit computation of these m4 partial derivatives is rather tedious even for small m, but is a task
that symbolic computational tools in e.g. Julia or Mathematica can handle. In fact, as seen in the Notebook, Julia
spits out the Jacobian quite easily. For the m = 2 case that we wrote out explicitly above, you can either take the
derivative of f̃ by hand or use Julia’s symbolic tools to obtain the Jacobian:

f̃ ′ =



(1,1) (2,1) (1,2) (2,2)

(1,1) 2p r q 0

(2,1) q p+ s 0 q

(1,2) r 0 p+ s r

(2,2) 0 r q 2s

 . (3)

For example, the first row of f̃ ′ consists of the partial derivatives of p2 + qr (the first output) with respect to the
4 inputs p, q, r, and s. Here, we have labeled the rows by the (row,column) indices (jout, kout) of the entries in the
“output” matrix d(A2), and have labeled the columns by the indices (jin, kin) of the entries in the “input” matrix A.
Although we have written the Jacobian f̃ ′ as a “2d” matrix, you can therefore also imagine it to be a “4d” matrix
indexed by jout, kout, jin, kin.

However, the matrix-calculus approach of viewing the derivative f ′(A) as a linear transformation on matrices
(as we derived above),

f ′(A)[X] = XA+AX ,

seems to be much more revealing than writing out an explicit component-by-component “vectorized” Jacobian f̃ ′,
and gives a formula for any m×m matrix without laboriously requiring us to take m4 partial derivatives one-by-one.
If we really want to pursue the vectorization perspective, we need a way to recapture some of the structure that is
obscured by tedious componentwise differentiation. A key tool to bridge the gap between the two perspectives is a
type of matrix operation that you may not be familiar with: Kronecker products (denoted ⊗).

3.3 Kronecker Products
A linear operation like f ′(A)[X] = XA + AX can be thought of as a “higher-dimensional matrix:” ordinary “2d”
matrices map “1d” column vectors to 1d column vectors, whereas to map 2d matrices to 2d matrices you might
imagine a “4d” matrix (sometimes called a tensor). To transform 2d matrices back into 1d vectors, we already saw
the concept of vectorization (vecA). A closely related tool, which transforms “higher dimensional” linear operations
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on matrices back into “2d” matrices for the vectorized inputs/outputs, is the Kronecker product A⊗B. Although
they don’t often appear in introductory linear-algebra courses, Kronecker products show up in a wide variety of
mathematical applications where multidimensional data arises, such as multivariate statistics and data science or
multidimensional scientific/engineering problems.

Definition 25
If A is an m × n matrix with entries aij and B is a p × q matrix, then their Kronecker product A ⊗ B is
defined by

A =


a11 · · · a1n
...

. . .
...

am1 · · · amn

 =⇒ A︸︷︷︸
m×n

⊗ B︸︷︷︸
p×q

=


a11B · · · a1nB
...

. . .
...

am1B · · · amnB


︸ ︷︷ ︸

mp×nq

,

so that A⊗B is an mp× nq matrix formed by “pasting in” a copy of B multiplying every element of A.

For example, consider 2× 2 matrices

A =

(
p r

q s

)
and B =

(
a c

b d

)
.

Then A⊗B is a 4×4 matrix containing all possible products of entries A with entries of B. Note that A⊗B ̸= B⊗A
(but the two are related by a re-ordering of the entries):

A⊗B =

(
pB rB

qB sB

)
=


pa pc ra rc

pb pd rb rd

qa qc sa sc

qb qd sb sd

 ̸= B ⊗A =

(
aA cA

bA dA

)
=


ap ar cp cr

aq as cq cs

bp br dp dr

bq bs dq ds

 ,

where we’ve colored one copy of B red for illustration. See the Notebook for more examples of Kronecker products
of matrices (including some with pictures rather than numbers!).

Above, we saw that f(A) = A2 at A =

(
p r

q s

)
could be thought of as an equivalent function f̃(vecA) mapping

column vectors of 4 inputs to 4 outputs (R4 7→ R4), with a 4 × 4 Jacobian that we (or the computer) laboriously
computed as 16 element-by-element partial derivatives. It turns out that this result can be obtained much more
elegantly once we have a better understanding of Kronecker products. We will find that the 4 × 4 “vectorized”
Jacobian is simply

f̃ ′ = I2⊗A+AT ⊗ I2 ,

where I2 is the 2 × 2 identity matrix. That is, the matrix linear operator f ′(A)[dA] = dAA + AdA is equivalent,
after vectorization, to:

vec f ′(A)[dA]︸ ︷︷ ︸
dAA+AdA

= (I2⊗A+AT ⊗ I2)︸ ︷︷ ︸
f̃ ′

vec dA =


2p r q 0

q p+ s 0 q

r 0 p+ s r

0 r q 2s


︸ ︷︷ ︸

f̃ ′


dp

dq

dr

ds


︸ ︷︷ ︸
vec dA

.

In order to understand why this is the case, however, we must first build up some understanding of the algebra of
Kronecker products. To start with, a good exercise is to convince yourself of a few simpler properties of Kronecker
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products:

Problem 26
From the definition of the Kronecker product, derive the following identities:

1. (A⊗B)T = AT ⊗BT .

2. (A⊗B)(C ⊗D) = (AC)⊗ (BD).

3. (A⊗B)−1 = A−1 ⊗B−1. (Follows from property 2.)

4. A⊗B is orthogonal (its transpose is its inverse) if A and B are orthogonal. (From properties 1 & 3.)

5. det(A⊗B) = det(A)m det(B)n, where A ∈ Rn,n and B ∈ Rm,m.

6. tr(A⊗B) = (trA)(trB).

7. Given eigenvectors/values Au = λu and Bv = µv of A and B, then λµ is an eigenvalue of A ⊗ B with
eigenvector u⊗ v. (Also, since u⊗ v = vecX where X = vuT , you can relate this via Prop. 27 below to
the identity BXAT = Bv(Au)T = λµX.)

3.3.1 Key Kronecker-product identity

In order to convert linear operations like AX +XA into Kronecker products via vectorization, the key identity is:

Proposition 27
Given (compatibly sized) matrices A,B,C, we have

(A⊗B) vec(C) = vec(BCAT ).

We can thus view A ⊗ B as a vectorized equivalent of the linear operation C 7→ BCAT . We are tempted to
introduce a parallel notation (A⊗B)[C] = BCAT for the “non-vectorized” version of this operation, although
this notation is not standard.

One possible mnemonic for this identity is that the B is just to the left of the C while the A “circles around”
to the right and gets transposed.

Where does this identity come from? We can break it into simpler pieces by first considering the cases where
either A or B is an identity matrix I (of the appropriate size). To start with, suppose that A = I, so that
BCAT = BC. What is vec(BC)? If we let c⃗1, c⃗2, . . . denote the columns of C, then recall that BC simply multiples
B on the left with each of the columns of C:

BC = B
(

c⃗1 c⃗2 · · ·
)
=
(

Bc⃗1 Bc⃗2 · · ·
)
=⇒ vec(BC) =


Bc⃗1

Bc⃗2
...

 .

Now, how can we get this vec(BC) vector as something multiplying vecC? It should be immediately apparent that

vec(BC) =


Bc⃗1

Bc⃗2
...

 =


B

B

.. .


︸ ︷︷ ︸

I⊗B


c⃗1

c⃗2
...


︸ ︷︷ ︸

vecC

,
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but this matrix is exactly the Kronecker product I ⊗B! Hence, we have derived that

(I⊗B) vecC = vec(BC).

What about the AT term? This is a little trickier, but again let’s simplify to the case where B = I, in which case
BCAT = CAT . To vectorize this, we need to look at the columns of CAT . What is the first column of CAT ? It is
a linear combination of the columns of C whose coefficients are given by the first column of AT (= first row of A):

column 1 of CAT =
∑
j

a1j c⃗j .

Similarly for column 2, etc, and we then “stack” these columns to get vec(CAT ). But this is exactly the formula
for multipling a matrix A by a vector, if the “elements” of the vector were the columns c⃗j . Written out explicitly,
this becomes:

vec(CAT ) =


∑

j a1j c⃗j∑
j a2j c⃗j
...

 =


a11 I a12 I · · ·
a21 I a22 I · · ·
...

...
. . .


︸ ︷︷ ︸

A⊗I


c⃗1

c⃗2
...


︸ ︷︷ ︸

vecC

,

and hence we have derived
(A⊗ I) vecC = vec(CAT ).

The full identity (A ⊗ B) vec(C) = vec(BCAT ) can then be obtained by straightforwardly combining these two
derivations: replace CAT with BCAT in the second derivation, which replaces c⃗j with Bc⃗j and hence I with B.

3.3.2 The Jacobian in Kronecker-product notation

So now we want to use Prop. 27 to calculate the Jacobian of f(A) = A2 in terms of the Kronecker product. Let
dA be our C in Prop. 27. We can now immediately see that

vec(AdA+ dAA) = (I⊗A+AT ⊗ I)︸ ︷︷ ︸
Jacobian f̃ ′(vecA)

vec(dA) ,

where I is the identity matrix of the same size as A. We can also write this in our “non-vectorized” linear-operator
notation:

AdA+ dAA = (I⊗A+AT ⊗ I)[dA] .

In the 2× 2 example, these Kronecker products can be computed explicitly:

(
1

1

)
︸ ︷︷ ︸

I

⊗

(
p r

q s

)
︸ ︷︷ ︸

A

+

(
p q

r s

)
︸ ︷︷ ︸

AT

⊗

(
1

1

)
︸ ︷︷ ︸

I

=


p r

q s

p r

q s


︸ ︷︷ ︸

I⊗A

+


p q

p q

r s

r s


︸ ︷︷ ︸

AT⊗I

=


2p r q 0

q p+ s 0 q

r 0 p+ s r

0 r q 2s

 = f̃ ′ ,

which exactly matches our laboriously computed Jacobian f̃ ′ from earlier!
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Example 28
For the matrix-cube function A3, where A is an m×m square matrix, compute the m2 ×m2 Jacobian of the
vectorized function vec(A3).

Let’s use the same trick for the matrix-cube function. Sure, we could laboriously compute the Jacobian via element-
by-element partial derivatives (which is done nicely by symbolic computing in the notebook), but it’s much easier
and more elegant to use Kronecker products. Recall that our “non-vectorized” matrix-calculus derivative is the
linear operator:

(A3)′[dA] = dAA2 +AdAA+A2 dA,

which now vectorizes by three applications of the Kronecker identity:

vec(dAA2 +AdAA+A2 dA) =
(
(A2)T ⊗ I+AT ⊗A+ I⊗A2

)︸ ︷︷ ︸
vectorized Jacobian

vec(dX) .

You could go on to find the Jacobians of A4, A5, and so on, or any linear combination of matrix powers. Indeed,
you could imagine applying a similar process to the Taylor series of any (analytic) matrix function f(A), but it
starts to become awkward. Later on (and in homework), we will discuss more elegant ways to differentiate other
matrix functions, not as vectorized Jacobians but as linear operators on matrices.

3.3.3 The computational cost of Kronecker products

One must be cautious about using Kronecker products as a computational tool, rather than as more of a conceptual
tool, because they can easily cause the computational cost of matrix problems to explode far beyond what is
necessary.

Suppose that A, B, and C are all m×m matrices. The cost of multiplying two m×m matrices (by the usual
methods) scales proportional to ∼ m3, what the computer scientists call Θ(m3) “complexity.” Hence, the cost of
the linear operation C 7→ BCAT scales as ∼ m3 (two m×m multiplications). However, if we instead compute the
same answer via vec(BCAT ) = (A⊗B) vecC, then we must:

1. Form the m2 ×m2 matrix A⊗B. This requires m4 multiplications (all entries of A by all entries of B), and
∼ m4 memory storage. (Compare to ∼ m2 memory to store A or B. If m is 1000, this is a million times
more storage, terabytes instead of megabytes!)

2. Multiply A ⊗ B by the vector vecC of m2 entries. Multiplying an n × n matrix by a vector requires ∼ n2

operations, and here n = m2, so this is again ∼ m4 arithmetic operations.

So, instead of ∼ m3 operations and ∼ m2 storage to compute BCAT , using (A⊗B) vecC requires ∼ m4 operations
and ∼ m4 storage, vastly worse! Essentially, this is because A⊗B has a lot of structure that we are not exploiting
(it is a very special m2 ×m2 matrix).

There are many examples of this nature. Another famous one involves solving the linear matrix equations

AX +XB = C

for an unknown matrix X, given A,B,C, where all of these are m × m matrices. This is called a “Sylvester
equation.” These are linear equations in our unknown X, and we can convert them to an ordinary system of m2

linear equations by Kronecker products:

vec(AX +XB) = (I⊗A+BT ⊗ I) vecX = vecC,
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which you can then solve for the m2 unknowns vecX using Gaussian elimination. But the cost of solving an
m2 × m2 system of equations by Gaussian elimination is ∼ (m2)3 = m6. It turns out, however, that there are
clever algorithms to solve AX +XB = C in only ∼ m3 operations (with ∼ m2 memory)—for m = 1000, this saves
a factor of ∼ m3 = 109 (a billion) in computational effort.

(Kronecker products can be a more practical computational tool for sparse matrices: matrices that are mostly
zero, e.g. having only a few nonzero entries per row. That’s because the Kronecker product of two sparse matrices
is also sparse, avoiding the huge storage requirements for Kronecker products of non-sparse “dense” matrices. This
can be a convenient way to assemble large sparse systems of equations for things like multidimensional PDEs.)
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