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[SQUEAKING]¬1

[RUSTLING]¬2

[CLICKING]¬3

STEVEN	G.	JOHNSON:¬4

OK,	so	last	time¬5

I	talked	about	how	in¬6

order	to	define	a	gradient,¬7

you	need	an	inner	product.¬8

So	that	way,	if	you	have	a¬9

scalar	function	of	a	vector,¬10

the	gradient	is	defined--¬11

basically	the¬12

derivative	has	to	be¬13

a	linear	function	that	takes¬14

a	vector	in	and	gives	you¬15

a	scalar	out.¬16

So	it	turns	out	this	has	to¬17

be--	if	you	have	a	dot	product,¬18

this	has	to	be	a	dot	product¬19

of	something	with	the	x.¬20

And	we	call	the	gradient.¬21

So	the	gradient	is	the¬22

thing	with	the	same	shape¬23

as	x	that	we	take	the¬24

dot	product	with	the	x¬25

to	get	the	f.¬26

So	what	I	didn't	mention	is¬27

that,	in	fact,	not	only	did¬28

we	need	a	dot	product¬29

to	define	a	gradient,¬30

actually	we	swept	something¬31

under	the	rug	earlier.¬32

We	actually	need	a	norm	in	order¬33

to	even	define	a	derivative¬34

in	the	first	place.¬35

All	right.¬36

If	you	have	a¬37

vector	space,	a	norm¬38

is	some	measure	of	the¬39

length	of	the	vector¬40

or	a	measure	of	distance.¬41

A	norm	takes	in	a	vector	v¬42

and	gives	you	out	a	scalar.¬43

And	technically,	to¬44

qualify	as	a	norm,¬45

this	map	has	to	be	non-negative.¬46

It	can't	be	negative.¬47

It	can	only	be	0	if	v	is	0.¬48

If	you	multiply¬49

the	vector	by	2,	it¬50
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has	to	multiply	the	length	by	2.¬51

Or	if	you	multiply	the¬52

length	by	negative	2,¬53

it	has	to	multiply	the	length	by¬54

2,	basically	the	absolute	value¬55

of	any	scalar.¬56

It	has	to	satisfy	something¬57

called	a	triangle	inequality.¬58

So	usually,	most	commonly¬59

we're	going	to	get	a	norm	just¬60

from	an	inner	product.¬61

So	once	you	define¬62

an	inner	product--¬63

we	talked	about	those	last	time.¬64

You	can	even	define	inner¬65

products	of	matrices--¬66

you	get	a	norm	for	free.¬67

You	can	take	the	norm¬68

is	just	a	square	root¬69

of	the	inner¬70

product	with	itself.¬71

And	this	satisfies¬72

all	these	properties¬73

for	any	inner	product.¬74

So	the	reason	I	mention¬75

this--	oh,	and,	by	the	way,¬76

just	cultural	note.¬77

So	if	you	have	a¬78

continuous	vector	space¬79

with	an	inner	product,	we¬80

call	that	a	Hilbert	space.¬81

If	you	have	a	continuous¬82

vector	space	with	a	norm,¬83

that's	called	a	Banach	space.¬84

So	it's	a	fancy-sounding¬85

name,	but	it	just¬86

means	you	have	a	norm.¬87

ALAN	EDELMAN:	You	can¬88

impress	your	friends¬89

with	your	fancy	mathematics,¬90

but	that's	all	it	is.¬91

STEVEN	G.	JOHNSON:	Yes.¬92

So	the	reason	I¬93

wanted	to	mention	this¬94

is	that	really	the	definition¬95

of	the	derivative	that	we¬96

used	earlier	implicitly¬97

requires	us	to	have	a	norm.¬98

So	it	actually	is	both¬99

the	input	and	the	output.¬100
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So	it	really	only¬101

applies	to	Banach	spaces.¬102

So	the	reason	for	that¬103

is	remember	I	define¬104

the	derivative	to	start	with.¬105

If	you	look	at	the¬106

change	in	the	output,¬107

f	of	x	plus	delta¬108

x	minus	f	of	x,¬109

for	not	an	infinitesimal	but¬110

a	finite	delta	x	that	may	be¬111

small,	remember	that	we	defined¬112

the	derivative	as	the	linear¬113

part,	as	the	linear	operator¬114

that	gives	the	change	to	first¬115

order,	which	means	we¬116

dropped	any	term	that's--¬117

we	called	it	little	o	of¬118

delta	x--	any	term	that¬119

goes	to	0	faster	than	delta	x.¬120

So	any	term	that's¬121

small	compared	to	this.¬122

But	in	order	to	define¬123

what	it	means	to	be	small,¬124

you	need	a	norm.¬125

If	I	have	two	vectors,¬126

a	column	vector,¬127

and	I	want	to	say	is	this	column¬128

vector	smaller	than	that	column¬129

vector,	how	do	I	check	it?¬130

I	check	the	length.¬131

You	need	to	map	it¬132

to	a	real	number¬133

to	get	a	distance¬134

or	a	smallness.¬135

So	formally,	the	definition¬136

of	this	little	o	dx¬137

is	basically	any	function¬138

such	that	the	norm¬139

of	this	over	the	norm¬140

of	delta	x	goes	to	0,¬141

as	delta	x	goes	to	0.¬142

And	in	fact,	even¬143

to	define	a	limit,¬144

you	need	a	norm	of	delta¬145

x	because	if	you've	taken¬146

[INAUDIBLE],,	there's	this¬147

epsilon	delta	meaning¬148

of	a	norm--¬149

of	a	limit,	sorry.¬150
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You	can	make	this¬151

arbitrarily	small.¬152

You	can	make	this	less¬153

than	or	equal	to	epsilon¬154

for	all	epsilon	greater	than	0.¬155

And	I'm	not	going	to	go¬156

through	the	definition.¬157

If	you've	seen	the¬158

definition	of	a	limit,¬159

there's	some	absolute	values¬160

in	there	that	for	vector	spaces¬161

have	to	turn	into	norms.¬162

But	basically	it's	just--¬163

ALAN	EDELMAN:	My¬164

experience	is	everyone's¬165

seen	the	definition	of¬166

delta	and	epsilon	limits,¬167

and	no	one	really¬168

understands	it.¬169

STEVEN	G.	JOHNSON:	Yeah.¬170

ALAN	EDELMAN:	Is	that	fair?¬171

Maybe	some	of	you	guys	really¬172

do,	but	most	of	us	don't.¬173

STEVEN	G.	JOHNSON:	Yeah,¬174

I	mean,	to	be	fair,¬175

it	took	people	2,000¬176

years	to	figure	it	out.¬177

The	concept	of	a	limit¬178

and	an	infinitesimal¬179

was	a	big	struggle¬180

in	mathematics¬181

going	back	to	the	ancient¬182

Greeks,	Zeno's	paradoxes¬183

and	so	forth.¬184

So	it	really	took	a¬185

long	time	for	people¬186

to	nail	down	what	this	meant.¬187

But	yeah,	you	need¬188

to	be	able	to	have¬189

a	length,	a	norm	of	the¬190

output,	because	this	has¬191

the	same	shape	as	the	output.¬192

These	are	the	same	shape	as	f.¬193

To	say	that	these	terms¬194

are	small	compared	to	delta¬195

x,	which	you	also	need¬196

a	norm	of	delta	x.¬197

So	just	implicitly,¬198

you	always	need¬199

a	norm	of	all	of	these¬200
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things	to	define	it.¬201

And	usually,	we're¬202

going	to	get	it¬203

because	we're	going	to	define--¬204

in	most	cases,	we'll¬205

define	an	inner	product,¬206

as	we'll	want	that¬207

anyway	because	if	we	want¬208

to	take	derivatives¬209

of	scalar	functions,¬210

we	want	to	be	able	to¬211

write	down	gradients.¬212

But	this	is	what¬213

you	really	need.¬214

So	anyway,	so	I	just	wanted	to--¬215

this	is	something	we	swept¬216

under	the	rug	in	the	beginning.¬217

But	since	we	defined¬218

Hilbert	spaces,¬219

so	I	thought	I	should¬220

define	a	Banach	space.¬221

I	mean,	I'm	still	sweeping¬222

some	things	under	the	rug.¬223

I'm	sweeping	what¬224

does	it	mean	for	it¬225

to	be	continuous	under	the	rug?¬226

But	yeah,	I	wanted	to¬227

throw	that	out	there.¬228

That's	all	I	wanted	to	say.¬229

ALAN	EDELMAN:	That's	it?¬230

STEVEN	G.	JOHNSON:	Yeah.¬231

Any	questions	about	that?¬232

ALAN	EDELMAN:	Questions?¬233

By	all	means.¬234

OK,	good.¬235

All	right.¬236

So	this	is	just	a¬237

little	notebook.¬238

And	if	we	really	need--¬239

this	isn't	the	live	version,¬240

so	I	can't	really	do	anything.¬241

But	I	have	a	feeling	that¬242

this	will	be	good	enough.¬243

But	if	we	need	the¬244

live	version,	we¬245

can	just	press	a	few	buttons.¬246

So	if	I	understood¬247

correctly,	last	time¬248

you	got	the	answer	for¬249

what	is	the	gradient¬250
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of	the	determinant.¬251

Is	that	right?¬252

Did	you	derive	this	formula?¬253

STEVEN	G.	JOHNSON:¬254

I	did	not	derive	it.¬255

I	just	gave	the	answer.¬256

ALAN	EDELMAN:	You¬257

gave	the	answer.¬258

And	there's	a	few¬259

different	formats.¬260

Did	you--¬261

STEVEN	G.	JOHNSON:	I¬262

give	it	the	first	one.¬263

Determinant	A--¬264

ALAN	EDELMAN:	Is	the	cofactor.¬265

STEVEN	G.	JOHNSON:¬266

--inverse	transpose,	yeah.¬267

ALAN	EDELMAN:	Oh,¬268

the	gradient	is¬269

the	determinant	of	A	times--¬270

that's	the	second	one,	right?¬271

STEVEN	G.	JOHNSON:	Yeah.¬272

ALAN	EDELMAN:	So	the¬273

first	one	is	the	cofactor¬274

of	A,	which	is	one	of¬275

those	linear	algebra	terms¬276

that	you	may	or¬277

may	not	remember.¬278

This	is	the	one.¬279

And	just	another¬280

term	is	the	adjugate¬281

of	A	transpose,	which	is	the--¬282

the	adjugate	of	a¬283

matrix	is	the	inverse¬284

of	the	matrix	divided¬285

by	the	determinant.¬286

STEVEN	G.	JOHNSON:	Multiplied¬287

by	the	determinant.¬288

ALAN	EDELMAN:	Multiplied¬289

by	the	determinant,	right.¬290

Let's	see.¬291

Of	course,	if	you	have¬292

the	gradient,	then--¬293

did	you	write	down	this¬294

version	as	well	last	time?¬295

The	d	of	the	determinant.¬296

STEVEN	G.	JOHNSON:	Well,	I	did	d¬297

of	any	matrix	function,	so	yes.¬298

I	defined	the	dot	product¬299

and	matrix	dot	product.¬300
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ALAN	EDELMAN:	Right,	right.¬301

I	see.¬302

So	d,	the	determinant,	will	be¬303

the	trace	of	whatever	formula¬304

you	have	over	here,¬305

this	formula	times	dA.¬306

dA.¬307

STEVEN	G.	JOHNSON:	Transposed.¬308

Transposed	times	it,	yeah.¬309

ALAN	EDELMAN:	Yes,	right,	sorry.¬310

STEVEN	G.	JOHNSON:	[INAUDIBLE]¬311

ALAN	EDELMAN:	Let¬312

me	clear	my	head.¬313

Yes,	the	trace	of	this¬314

thing	transposed	times	dA,¬315

which	is	the	element-wise--¬316

it's	just	like	the	dot	product.¬317

You	all	get	that.¬318

It's	just	like	the¬319

vector	dot	product.¬320

You	multiply	corresponding¬321

elements,	and	you	take	the	sum.¬322

Whenever	you	have	the¬323

trace	of	A	transpose	B,¬324

as	Steven	is	writing	very	nicely¬325

over	here,	that's	the	A	dot	B.¬326

So	if	we	know	the	gradient,	then¬327

the	d	has	to	be	this	formula.¬328

I'm	just	defining	the¬329

adjugate	right	here	so¬330

that	I	can	have	it	handy.¬331

As	Steven	was	saying,¬332

it's	just	the	determinant¬333

times	the	inverse.¬334

This	is	just	a	definition.¬335

And	then	there's	the¬336

cofactor	matrix,	which¬337

is	the	adjugate	of	A	transpose.¬338

Once	I've	defined	this¬339

one,	to	define	this	one,¬340

I	just	get	to	do	the	equality.¬341

So	this	defines	these	functions.¬342

And	here	I've	sort	of¬343

written	it	every	which	way.¬344

The	inverse	in	terms	of	the¬345

adjugate	and	the	cofactor,¬346

the	adjugate	in	terms¬347

of	the	determinant,¬348

the	inverse	and	the	cofactor.¬349

You	get	it.¬350
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All	three	possibilities¬351

are	written	here.¬352

So	for	2-by-2	matrices,¬353

here's	the	2-by-2	matrix,¬354

and	here's	the	cofactor	matrix.¬355

Some	of	you	will¬356

recognize	that	when¬357

you	form	the	inverse¬358

of	a	2-by-2	matrix,¬359

the	determinant	goes¬360

in	the	denominator.¬361

And	the	thing	that	goes¬362

in	the	numerator--	right,¬363

you're	all	good	at¬364

2-by-2	inverses.¬365

Do	you	know	that	by	heart?¬366

Would	you	be	able	to¬367

do	it	in	your	sleep?¬368

You	switch	the	a	and	the	d,¬369

and	you	negate	the	b	and	the	c.¬370

Well,	let's	see.¬371

You	negate	the	b	and	the	c,	but¬372

I'm	also	doing	the	transpose.¬373

So	you	negate	the	b¬374

and	c	and	transpose¬375

because	it's	the	cofactor.¬376

For	the	adjugate,	you¬377

just	take	the	minus.¬378

And	anyway,	these¬379

are	all	the	formulas.¬380

Here's	the	inverse.¬381

So	the	inverse	is	the	adjugate¬382

divided	by	the	determinant.¬383

Doing	all	this¬384

numerically	just	for	fun.¬385

So	numerically,	here's¬386

a	random	matrix,¬387

and	here's	a	random¬388

perturbation.¬389

What	we're	going	to	do	is¬390

look	at	the	determinant¬391

of	the	perturbed	A	minus¬392

the	determinant	of	A.¬393

So	there's	the	numerical	value.¬394

And	by	the	way,	I	know¬395

Steven	has	recommended	always¬396

using	things	on	the	order¬397

of	square	root	of	epsilon¬398

to	make	the	perturbations¬399

10	to	the	minus	eighth.¬400
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And	he's	right.¬401

I	never	do	that,	but	you¬402

should	listen	to	him.¬403

I	just	start	typing	three¬404

or	four	0's	and	a	1.¬405

And	actually,	it's	been	good¬406

enough	for	my	purposes	just¬407

to	check	things.¬408

I	mean,	Steven's	is	more--¬409

it's	the	best	possible	one,¬410

a	square	root	of	epsilon.¬411

But	with	a	quick¬412

and	dirty	test,	I¬413

don't	have	the	time	to	type¬414

all	those	0's,	and	I	never¬415

remember	to	type	1e	minus	8.¬416

So	I	just	type	these	four¬417

or	five	0's	or	three,	four,¬418

or	five	0's.¬419

But	in	any	event,	here's¬420

what	the	finite	difference.¬421

Here's	the	trace	of¬422

the	adjugate	times.¬423

We	see	that	they're	correct	to¬424

enough	digits	to	believe	it.¬425

STEVEN	G.	JOHNSON:	How¬426

come	the	adjugate	is	not¬427

transposed	there?¬428

There's	something	missing	here.¬429

Oh,	no,	it's	the¬430

adjugate--	yeah,	OK,	right.¬431

The	determinant	is	the¬432

transpose	of	the	adjugate.¬433

Never	mind.¬434

Never	mind.¬435

Adjugate	is	the	great--¬436

ALAN	EDELMAN:	I	have	to	go¬437

back	and	look	at	these	formulas¬438

to	answer	your--¬439

STEVEN	G.	JOHNSON:¬440

It's	the	transpose¬441

of	the	gradient,	so	yes.¬442

ALAN	EDELMAN:	Let	me¬443

say,	yes,	what	you	just¬444

said,	that	the	adjugate¬445

of	the	transpose¬446

is	the	thing	that	you	want.¬447

And	so	the	trace	needs¬448

to	transpose	it	twice,¬449

so	it's	left	non-transposed.¬450
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Yeah.¬451

You	got	it.¬452

The	gradient	is¬453

the	one	transposed,¬454

and	this	has	to	be	the¬455

transpose	of	the	gradient.¬456

STEVEN	G.	JOHNSON:	Yeah.¬457

This	is	gradient	of	determinant.¬458

ALAN	EDELMAN:	Right,¬459

like	a	double	negative¬460

makes	a	positive,	a	double¬461

transpose	makes	for	a	no	op.¬462

STEVEN	G.	JOHNSON:	This¬463

is	our	dot	product.¬464

ALAN	EDELMAN:	Yep.¬465

That's	right.¬466

OK.¬467

So	to	actually	see¬468

the	gradient,	we¬469

can	rely	on	Julia's¬470

internal	forward	difference¬471

mode,	for	example,	which	is--¬472

forward	differentiation.¬473

It's	not	forward	difference.¬474

It's	automatic	differentiation.¬475

It's	different	from¬476

forward	differencing.¬477

It's	the	forward¬478

mode	automatic--¬479

I	see	this,	and	I	think	forward¬480

differences,	but	it's	not.¬481

I	think	in	this¬482

lecture,	if	I	get¬483

a	chance	in	just¬484

a	little	bit,	I'll¬485

tell	you	about	how	this¬486

forward	mode	works.¬487

Steven	kind	of	gave¬488

you	one	view	of	it.¬489

I'll	give	you¬490

another	view	today.¬491

But	you	just	say,	give	me	the¬492

derivative	or	the	gradient¬493

of	the	determinant	function,¬494

and	Julia	will	happily	do	it.¬495

And	of	course,	I¬496

can	compare	that¬497

with	the	adjugate¬498

of	A	transpose.¬499

And	you	guys	know	me	by	now.¬500
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When	I	see	these¬501

things	matching,¬502

it	looks	like	to	all	the¬503

digits,	it	makes	me	happy.¬504

It	makes	me	think,	wow,	this¬505

formula	for	the	derivative¬506

is	correct.¬507

Right,	so	this,	for	sure,	is¬508

the	derivative	of	the	gradient.¬509

OK.¬510

I	don't	know.¬511

Maybe	I	tried	to¬512

say	this	before,¬513

but	I'm	just	going	to	repeat¬514

it,	if	you've	heard	me	say	it.¬515

But	just	philosophically,¬516

I	find	it	remarkable¬517

that	you	could	think	of	a¬518

limit	of	a	finite	difference,¬519

and	the	great	mathematical¬520

gods	let	us	have	a	formula.¬521

I	mean,	you've	all¬522

done	it	in	calculus,¬523

like	the	difference	of	a--	you¬524

take	a	sine	and	a	little	bit¬525

more	sine,	you	get	a	cosine.¬526

Or	the	log,	you	get	1	over	x.¬527

Or	x	squared,	you	get	2x.¬528

But	I	don't	know.¬529

Could	you	guys¬530

imagine	a	universe¬531

where	the	mathematical¬532

gods	weren't	kind	enough?¬533

Not	every	integral	could¬534

be	written	as	a	formula.¬535

I	mean,	as	you	know,¬536

lots	of	integrals¬537

can't	be	written	in	terms¬538

of	elementary	functions.¬539

But	derivatives,	you¬540

could	always	do	it.¬541

And	you	could	do	it¬542

for	scalar	calculus.¬543

That's	why	calculus¬544

is	so	easy	to	teach¬545

and	is	a	beginning	subject.¬546

You	could	do	it	for¬547

vector	calculus,¬548

and	you	could	do	it	for	these¬549

complicated	matrix	functions.¬550
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I	don't	know.¬551

Do	you	ever	stop	and	think¬552

about	that	being	remarkable,¬553

or	you	just	take	it	as	a	given¬554

and	move	on	with	your	lives?¬555

I	think	it's	amazing¬556

that	we	could	have¬557

a	formula	for	this	difference.¬558

I	just	do.¬559

And	a	simple	formula,	in	effect.¬560

But	maybe	you	guys	just¬561

take	it	as	a	granted	given,¬562

but	I	don't	know.¬563

I	think	formulas	are¬564

gifts	from	the	gods,¬565

and	I	don't	take¬566

them	for	granted.¬567

All	right.¬568

So	this	is	really¬569

just	to	show	you¬570

how	to	do	reverse	mode	in	Julia.¬571

So	it's	not	much	different.¬572

I'm	just	calling¬573

Zygote,	which	is¬574

one	of	the	big,	popular¬575

packages	in	Julia¬576

to	do	reverse	mode	autodiff.¬577

And	you	see	it's¬578

not	much	different.¬579

This	is	the	ForwardDiff¬580

package	dot	gradient,¬581

and	this	is	the¬582

Zygote	dot	gradient.¬583

Under	the	hood,	it's¬584

getting	the	answer¬585

in	a	completely	different¬586

way,	by	going	reverse	mode.¬587

But	it	actually	gives¬588

the	same	answer.¬589

Though	I	wouldn't	be	surprised--¬590

maybe	Steven	knows	better--¬591

I	wouldn't	be	surprised	if¬592

this	is	just	built-in	formulas¬593

in	both	cases.¬594

I	don't	know.¬595

Let's	see.¬596

We	could	do	it	symbolically,¬597

but	let's	get	to	the	proof.¬598

So	there	are	a	couple	of	ways¬599

to	prove	this	mathematically.¬600
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So	one	relatively¬601

simple	proof	is¬602

to	remember	the	Laplace¬603

expansion	of	determinants.¬604

So	I	suspect	you	all¬605

remember	that	if	you¬606

want	to	calculate	the¬607

determinant	of	a	big	matrix,¬608

usually	people	take¬609

maybe	the	first	row.¬610

But	in	fact,	you¬611

could	take	any	row.¬612

But	do	you	remember?¬613

You	take	the¬614

top-left	entry	times¬615

the	determinant	of	what¬616

happens	if	you	cross	out¬617

the	first	row	and	first	column.¬618

Then	the	second	entry,	and	you¬619

cross	out	that	row	and	column¬620

with	a	minus	sign.¬621

Plus,	minus,	plus,	minus.¬622

You	remember	that	rule?¬623

So	that's	the	Laplace	expansion.¬624

And	the	key	fact	is	that	if--¬625

for	example,	if	I'm¬626

working	with	Ai1.¬627

Let's	say	I'm	starting¬628

with	the	i-th	row.¬629

Then	Ai1	is	not	inside¬630

any	of	these	Cs.¬631

Ai1	only	appears	here.¬632

Everything	else	you	see¬633

depends	on	other	elements¬634

of	the	matrix,	but	it¬635

doesn't	depend	on	Ai1.¬636

Similarly,	if	you	look	at¬637

Ai2,	Ci2,	and	every	other	term¬638

only	depends	on	Ai2.¬639

To	make	that	point	very¬640

clear,	here	what	I	did	was	I¬641

took	this	matrix,	and¬642

I	made	this	matrix--¬643

this	3-by-3	matrix¬644

you'll	see,	it's¬645

almost	completely¬646

numerical,	but	I	put¬647

one	symbol	in	the	bottom	right.¬648

And	if	you	take	the	determinant,¬649

you	see	that	this	is	an--¬650
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I	don't	know	whether¬651

to	call	this	a	linear¬652

or	an	affine	function.¬653

STEVEN	G.	JOHNSON:¬654

It	would	be	affine.¬655

ALAN	EDELMAN:	Affine¬656

for	this	class.¬657

Some	people	would¬658

actually	say	it's¬659

linear	in	the	sense	of¬660

linear,	quadratic,	cubic.¬661

It's	first-degree	polynomial.¬662

But	let's	call	it	affine	for¬663

the	purposes	of	this	class¬664

because	it's	not	13a	plus	0.¬665

But	whatever	it	is,	it's¬666

a	first-degree	polynomial¬667

is	what	it	is.¬668

And	the	fact	of	the¬669

matter	is	the	coefficient¬670

of	a	is	exactly¬671

this	determinant.¬672

It's	4	times	4	minus	3.¬673

It's	16	minus	3.¬674

It's	13.¬675

And	so	the¬676

coefficient	of	every--¬677

if	you	make	any¬678

element	a	symbol,¬679

the	coefficient	that's	in¬680

front	of	it	is	just	this	minor.¬681

And	so	taking	derivatives	of¬682

first-degree	functions	is	easy.¬683

It's	just	the	slope.¬684

The	derivative	of¬685

this	determinant¬686

with	respect	to	this	element¬687

is	clearly	the	number	13.¬688

And	so	the	way	to¬689

say	this,	in	general,¬690

is	if	I	want	to	take	the¬691

derivative	of	determinant¬692

with	respect	to	any¬693

Aij	element,	the	slope¬694

is	the	thing	that	multiplies	it.¬695

So	it's	Cij.¬696

And	so	that	is	one¬697

immediate	way	to	conclude¬698

that	the	gradient¬699

of	the	determinant¬700
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is	the	cofactor	matrix.¬701

It's	that	simple.¬702

There's	another	proof¬703

that	is	sort	of--¬704

I	mean,	this	proof¬705

is	pretty	simple.¬706

I	think	it's	easy	to	agree	that¬707

this	is	a	nice,	simple	proof.¬708

There's	another	proof	that¬709

might	seem	a	slightly	harder,¬710

in	one	way,	but	in	a¬711

way,	it's	sort	of--¬712

mathematicians	like¬713

this	kind	of	proof.¬714

And	so	you	get	to	take¬715

your	pick	which	one	you¬716

like	best,	but	let	me	just¬717

show	you	an	alternative	proof.¬718

So	in	this	alternative¬719

proof,	what	we're	going	to	do¬720

is	we're	going	to	figure	out	the¬721

right	answer	near	the	identity.¬722

And	then	we're	going	to--¬723

and	then	we're	going	to	use¬724

that	to	bootstrap	ourselves¬725

to	any	other	matrix.¬726

You	know	how	to	expand--¬727

you're	all	familiar,¬728

if	I	ask	you¬729

to	compute	the	characteristic¬730

polynomial	of	a	matrix,¬731

let's	call	it	M.	If¬732

I	need	to	do	the--¬733

here,	I'll	do	what	Steven¬734

does,	and	I'll	do	it	like	this.¬735

So	if	anybody	asked¬736

you	to	calculate¬737

the	characteristic	polynomial--¬738

and	I'm	using	the	mouse,	which¬739

means	it's	really	sloppy.¬740

Not	that	my	handwriting	is	so¬741

great,	but	it's	not	this	bad.¬742

All	right.¬743

So	the	characteristic¬744

polynomial	of	any	matrix	M¬745

is	usually	written	like	this.¬746

And	there's	lots	of	factors.¬747

There's	lambda	to	the¬748

n	and	all	the	way	down¬749

to	the	determinant,	plus	or¬750
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minus	the	determinant	of	M.¬751

So	you	remember	that.¬752

And	if	you	want,	you	can--¬753

if	you	want,	you	can¬754

make	this	a	plus	sign,¬755

and	then	you	get	plus	signs¬756

in	this	whole	formula.¬757

And	so	this	is	not¬758

much	different.¬759

Here	if	lambda	was	1,	if	you¬760

just	took	lambda	equals	1,¬761

you'd	have	determinant¬762

of	I--	well,¬763

let's	just	see	it	this	way.¬764

Determinant	of	I	plus	a¬765

matrix	would	be	1	plus.¬766

And	then	there	would	be	the¬767

terms	that	you	would	get.¬768

There	would	be	the	next	terms.¬769

This	thing	here,¬770

as	you	all	know,¬771

is	the	trace	of	the	matrix.¬772

So	maybe	I	should¬773

have	put	that	in.¬774

You	get	lambda	to¬775

the	n	plus	lambda¬776

to	the	n	minus	1	times¬777

the	trace	of	the	matrix.¬778

So	if	you	make	a	tiny,¬779

little	perturbation,¬780

the	determinant	of	I	plus	dA--¬781

I	guess	I	should	have	made¬782

this	1	plus	the	trace	of	dA,¬783

to	be	honest.¬784

Let's	fix	that	right	now.¬785

So	the	determinant	of¬786

I	plus	dA	would	be	1.¬787

That	would	be	1	to	the	n.¬788

Plus	1	to	the	n	minus	1	times¬789

the	trace	of	the	matrix.¬790

And	then	there's	the¬791

lower-order	terms.¬792

So	that's	one	way¬793

to	think	of	it.¬794

And	so	there	we	immediately	get¬795

the	answer	around	the	identity.¬796

And	now	if	we	want¬797

to	get	this	anywhere,¬798

all	we	have	to	do	is¬799

recognize	that	if	we	want¬800
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to	go	to	the	determinant¬801

of	A	plus	dA,¬802

then	we	just	go	A	times¬803

A	inverse	over	here,¬804

and	that's	just	the	identity.¬805

But	then	we	can	use	the¬806

properties	of	determinants¬807

to	pull	out	the¬808

determinant	of	A.¬809

And	you	just	get	I¬810

plus	A	inverse	dA.¬811

And	this	basically	here,	we¬812

just	think	of	this	A	inverse	dA¬813

as	the	trace	formula.¬814

And	therefore,	we¬815

get	our	answer,¬816

the	very	answer¬817

we're	looking	for.¬818

In	a	way,	this	is¬819

more	complicated,¬820

but	mathematicians	like¬821

this	one	better	than--¬822

I	don't	know	why.¬823

They're	both	valid.¬824

You	get	to	take	your	pick.¬825

There's	something	I	like¬826

about	this,	though	it	is¬827

a	little	bit	more	complicated.¬828

But	in	any	event,	we¬829

get	the	same	answer.¬830

So	what	do	we	have	here?¬831

So	application	to¬832

the	derivative	of¬833

the	characteristic	polynomial.¬834

So	once	again,	there's¬835

the	simple	proof.¬836

The	characteristic¬837

polynomial	of	a	matrix¬838

is	the	product	of	x¬839

minus	the	eigenvalues.¬840

Probably	a	different	sign¬841

from	what	I	have	here.¬842

You	take	the	derivative¬843

of	this	product.¬844

You	get	the	sum	of	these¬845

products,	n	minus	1¬846

at	a	time,	which	you¬847

could	rewrite	like	this.¬848

But	you	can	also	directly¬849

do--	with	our	technology,¬850
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you	can	do	this	and	get¬851

basically	the	same	answer¬852

as	the	direct	proof.¬853

And	then	I	have	some¬854

numerical	checks.¬855

Let's	see.¬856

And	the	derivative	of¬857

the	log	determinant.¬858

Log	determinant	comes	up	a	lot.¬859

Logs	have	lots	of¬860

functions	come	up	a	lot.¬861

For	example,	Steven,¬862

I	don't	know,¬863

a	few	lectures	ago	talked¬864

about	this	f	over	f	prime.¬865

It's	what	shows	up	whenever	you¬866

do	anybody's	Newton's	method.¬867

And	of	course,	this¬868

could	be	written	as	1¬869

over	the	log	f	prime.¬870

So	basically,	the	logarithmic¬871

derivative	and	its	reciprocal¬872

come	up	all	over	mathematics.¬873

So	the	derivative	of	the¬874

log	of	the	determinant¬875

is	simply	the	trace	of¬876

the	inverse	times	the	dA.¬877

This	you've	seen,	A	inverse.¬878

And	that's	it.¬879

Any	questions?¬880

That	basically	covers	the¬881

gradient	of	the	determinant.¬882

Any	questions	about	that?¬883

So	maybe	a	few	words¬884

about	determinant.¬885

Interestingly¬886

enough,	people	often¬887

tell	you	that	you	should¬888

never	compute	a	determinant.¬889

Or	hardly	ever	might¬890

be	a	fair	term.¬891

So	determinants	are	real.¬892

It's	a	real	favorite	of¬893

elementary	linear	algebra¬894

classes.¬895

Determinants	are	great	for¬896

telling	you	in	exact	arithmetic¬897

whether	a	matrix¬898

is	singular	or	not.¬899

So	a	matrix	has	determinant¬900
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0,	it's	singular.¬901

If	the	determinant¬902

is	not	0,	it's	not.¬903

And	that	sounds	like¬904

a	really	good	idea,¬905

to	have	something	like	that.¬906

But	it	turns	out	that	when¬907

you're	doing	computations¬908

in	finite	precision,	if¬909

you're	doing	it	on	a	computer,¬910

the	determinant	turns	out¬911

to	be	not	so	meaningful.¬912

It	gets	to	be	hard	to¬913

compute	accurately.¬914

There	are	a	lot	of	issues	with¬915

calculating	the	determinant.¬916

It	turns	out	that	while	the¬917

pure	mathematicians	live¬918

in	a	binary	world	where	a	matrix¬919

is	singular	or	non-singular,¬920

the	truth	of	the	matter	is¬921

is	that	the	world	of	matrices¬922

is	not	so	binary.¬923

It's	a	bit	more	of¬924

a	spectrum	where¬925

matrices	are	singular	or	nearly¬926

singular	or	a	little	bit	bad¬927

or	not	at	all	bad.¬928

And	probably	you've	all	heard¬929

the	word	that	I'm	referring	to.¬930

The	word	that	we	use¬931

in	numerical	analysis¬932

is	conditioning.¬933

So	ill	conditioned	means	a¬934

matrix	is	nearly	singular.¬935

And	well	conditioned	means¬936

that	it's	very	non-singular.¬937

Too	many	double¬938

negatives	there,	but	it's¬939

sort	of	the	good¬940

side	of	singular¬941

when	we	say	it's¬942

well	conditioned.¬943

And	so	the	determinant¬944

doesn't	really	give--¬945

the	determinant	it's¬946

not	a	really	good--¬947

give	a	good	job	of	talking¬948

about	how	nearly	singular¬949

matrices	are.¬950
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The	condition	number,	which	is¬951

related	to	singular	values--¬952

I'm	not	going	to	talk¬953

about	that	today--¬954

is	a	much	better	way	of¬955

talking	about	matrices¬956

being	singular	or	not.¬957

So	you	learned	it¬958

all	in	a	course,¬959

like	18.06	or	elementary¬960

linear	algebra.¬961

You	learned	about	determinants.¬962

And	then	later	on,¬963

when	you	compute,¬964

people	tell	you	to	forget¬965

about	determinants	mostly.¬966

There	are	times,	but	mostly.¬967

And	the	other	thing¬968

we	tell	people	to	do¬969

is	forget	about	the¬970

characteristic	polynomial¬971

as	well.¬972

That's	not	how	we	calculate¬973

eigenvalues	either.¬974

We	don't	take	roots¬975

of	polynomials.¬976

Anybody	happen	to	know¬977

how	we	compute	eigenvalues¬978

in	the	real	world?¬979

We	don't	do	characteristic¬980

polynomials.¬981

Anybody	know	the¬982

magic	two	letters¬983

that	happen	when	you¬984

type	eigenvalues?¬985

How	many	of	you¬986

just	thought	it	was¬987

the	characteristic	polynomial?¬988

You	take	the	roots.¬989

How	many	of	you	had	any¬990

idea	how	roots	got	taken--¬991

eigenvalues	got	taken¬992

on	the	computer?¬993

So	do	you	have	any	idea	what¬994

the	algorithm	is	being	used?¬995

AUDIENCE:	[INAUDIBLE]¬996

ALAN	EDELMAN:	The	power	method.¬997

AUDIENCE:	Yeah.¬998

ALAN	EDELMAN:	OK,¬999

so	you	probably¬1000
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didn't	hear	the	student¬1001

saying	that,	well,	in	18.06,¬1002

I	learned	about	something	like¬1003

the	power	method,	which	gives¬1004

you	the	dominant	eigenvalue.¬1005

Yeah.¬1006

And	then	nobody	else	in¬1007

the	room	has	any	idea¬1008

how	eigenvalues	get	calculated?¬1009

Just	a	little	bit¬1010

of	culture	here.¬1011

So	people	don't	know.¬1012

I	see.¬1013

I	kind	of	feel	like	I¬1014

ruined	the	question	then.¬1015

I	should	have	just	asked	how¬1016

are	eigenvalues	computed?¬1017

Because	I	imagine	many¬1018

of	you	would	have	said,¬1019

isn't	it	the¬1020

characteristic	polynomial?¬1021

You	get	the	roots.¬1022

Because	every	one¬1023

of	you	have	formed¬1024

the	characteristic	polynomials¬1025

of	2-by-2	matrices.¬1026

I	know	you	have.¬1027

You	got	that	quadratic	equation,¬1028

and	you	solve	for	the	roots.¬1029

You	remember?¬1030

Who	remembers	doing	that?¬1031

Quadratics,	you	get	the	roots.¬1032

If	you	had	a	mean	teacher,	maybe¬1033

they	forced	you	to	do	a	cubic,¬1034

but	I	bet	they	didn't.¬1035

Anyone	ever	do	it	for	a	cubic?¬1036

Maybe	it	was	rigged¬1037

to	be	easy	though.¬1038

So	right,	so	none	of	that¬1039

happens	on	the	computer.¬1040

I'm	not	going	to	tell	you¬1041

in	detail	how	it's	done,¬1042

but	I	will	mention	just¬1043

the	fact	that	it's	not¬1044

the	characteristic¬1045

polynomial	is	half¬1046

of	what	I	want	you	to	know.¬1047

And	the	other	half	is	there's¬1048

something	called	the	QR¬1049

algorithm	for	eigenvalue.¬1050
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So	in	general,	a	QR	for¬1051

a	matrix	factors	a	matrix¬1052

to	orthogonal	times¬1053

upper	triangular.¬1054

And	a	funny	thing	happens.¬1055

If	you	factor	a	matrix	into	QR¬1056

and	then	reverse	it	and	get	RQ,¬1057

and	if	you	do	that	again,¬1058

factor	that	new	matrix	into	QR¬1059

and	reverse	it	to	RQ,¬1060

and	you	keep	doing	that,¬1061

essentially	the	eigenvalues¬1062

magically	appear.¬1063

And	there	are	some	details.¬1064

If	the	matrix	is¬1065

symmetric,	the	matrix¬1066

will	actually	become	more¬1067

and	more	diagonal	as	you	go.¬1068

If	it's	not	symmetric,	but¬1069

it	has	real	eigenvalues,¬1070

it	will	become	triangular.¬1071

And	you'll	see	the	eigenvalues¬1072

on	the	diagonal	eventually.¬1073

And	if	it's	complex,	you'll¬1074

get	these	little	2-by-2	pieces¬1075

which	are	easy	to	get¬1076

the	eigenvalues	from.¬1077

So	there	are	a	bunch	of¬1078

tricks	to	accelerate	all	this,¬1079

but	the	basic	idea¬1080

is	QR,	RQ,	QR,	RQ.¬1081

You	might	actually	try	it	in¬1082

Julia	or	Python	or	whatever.¬1083

MATLAB,	whatever	you¬1084

like	to	do	one	day.¬1085

You'll	see	it	just	works.¬1086

STEVEN	G.	JOHNSON:¬1087

But	it	is	related¬1088

to	the	power	method	under¬1089

the	hood,	if	you	dig	deep.¬1090

ALAN	EDELMAN:	Oh,¬1091

dig	really	deep.¬1092

That's	right.¬1093

It's	sort	of	like	a	block	power¬1094

method	in	multiple	dimensions¬1095

all	at	once.¬1096

It's	crazy.¬1097

Yeah.¬1098

OK.¬1099

All	right.¬1100
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So	that's	that	one.¬1101
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