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Review of basic concepts: Heat interactions:
when is the energy exchanged entirely distinguishable from Work?

The cyclic engine X intercepts the energy exchanged
between A and B and tries to separate part of it as work.

(5E X—B
System A ’ i System B
5E A—>X 5 X 5B
0 > Cyclic "

Initial s.e.s. Al Initial s.e.s. Bl

A X engine X

£
Work 2

Energy and entropy balances for X, A and B
(assuming reversible processes),

and Gibbs relations for A and B: get 1—>X 1
\NE / (SZ: Yi

The max fraction of the exchanged
0=gEA>X _swX=>G _ spX—=B energy that can be separated as
work is negllglble (<< 1)only in the

{ sgAX _ —dE4 = 1454 — TAssA>X [t = el
e =it
—Al<<1
| 0EX8 —dE® = 1848 = 1B a5 X8 I

This condition defines therefore

the heat interaction.
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Review of basic concepts: Heat interactions
is the definition of Heat compatible with
the notions we learn in Heat Transfer

The strict definition of heat interaction just given may appear in contrast with the
common notion that calls heat transfer the exchange of energy between
systems at different temperatures.

Heat Transfer

« The contact between two bodies at different temperatures produces
nonequilibrium states in both systems

« To study these nonequilibrium states, we model each body as a continuum of
infinitesimal volumes, and assume that each is in a state not to far from a
s.e.s. (local quasi-equilibrium assumption)

« The temperatures of two adjacent volume elements differ only slightly,
therefore they interact via heat interactions

« We speak of temperature field within the two bodies

Subsystems
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Review of basic concepts: Heat interactions
steady state heat transfer requires non-equilibrium

Infinitesimal volume in a nonequilibrium state.
Here the entropy needed to sustain the steady state 1s generated by irreversibility

Assumption of states not too far Assumption of states not too far
fromtheses. at 7(x) | | , , from the s.e.s. at 7{x+dx)
Energy balance at > N d / Entropy balance at
teady state: Q :
steady state . | s-teady statc.e.
b e O lay_ o0 0
=0 =0
x —dx X X+ dx x + 2dx

The infinitesimal volume 1s

1n a state close to a s.e.s.:

. T(x)=T(x+dx) )
T T(x0)T (x + dx)
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Consequences of the Principle of entropy nondecrease in weight processes:
Temperature (or -1/7) as escaping tendency for energy.
Pressure as capturing tendency for volume

System

System €' = AB c=48 < . 1 VG If ABis isolated and
System A [ System B System A |System B = states A; and B,
SES A, | SES B, SES A, | SES B, b are SES but not MES.
Efl E1B E{‘ +dE E1B —dE £ Then, a spontaneous
nt, TA nB, TP nA nB o” process for C' can
pit, VA pP, VP VA+dv | VE —adV & ~ occur only if S§ > S¢
L = i l.e.
State Cy = A, By State Cy = A3 B, SC =94+ 58 SC 59>
from entropy additivity
C C A B A B A A B B
0<8y =57 =05 +55)— (57 +57) =(5 —57)+ (5 = 57)
from the fundamental relations for A and B and the principle of maximum entropy
TAdE + TA Py g 75 (—dE) TB (—dV)
11 pi  pr
— — dE+ | = — =% | dV
(Tf“ TP ) ¢ 17
must be >0 must be >0
for dV =0 for T = TP
and dEf > 0 and dV >0
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Consequences of the Principle of entropy nondecrease in weight processes:
Temperature (or -1/7) as escaping tendency for energy.
Chemical potentials as escaping tendencies for constituents

ssiten © = 2l Systam U = 45 o . nC VG If AB s isolated and
System A = System B System A = System B a states A; and By
SES A, = SES B SES A, = SES B, b are SES but not MES.
E1A = ElB Efl +dE = ElB —dE £a Then, a spontaneous
nd, T4 = nB, TP nA +dn; = nb —dn, I process for C' can
nA VA = pB VB A VA = B B B occur only if S¢ > SC¢
State C; = A1 B, State Cy = A2 By 8¢ =84+ Sé o SC _ 8¢ >
2 1 2

from entropy additivity
0< 8y =Sy = (S5 +57) — (S +57) = (S5 — i) + (83 — S7)

from the fundamental relations for A and B and the principle of maximum entropy

1 i 1 i
< —dE— 14V + — (—dE) — Sk (—dn,
L1 Rt
— — ) dE+ (2L — L) gy,
(7~ 7p) 72+ (7 =)
must%; >0 must;)re >0
for dn; =0 for T4 = TE

and dE > 0 and dn; > 0
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Review of basic concepts:

Experimental measurement
of stable-equilibrium properties
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Experimental measurement of SES properties:
thermometer

Thermometer: It is a system for which the temperature is easily readable on a
scale.

If a thermometer B is placed in contact with a system A and we wait for mutual
equilibrium to be reached, T8 = TA.

The temperature read by thermometer B
is equal to that of system A, regardless of
the details of system A.

=

—
w
I
—
|J>
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Experimental measurement of SES properties:
manometer

Manometer: it is a system for which the pressure is easily readable on a scale.

If a manometer B is brought into mutual equilibrium with a system A, through a
piston or a movable interface, with a system A, pB = pA.

The pressure read by manometer B is
equal to that of system A, regardless of
details of system A.

=

NOTE: It can be proved (pp.158-159 of G&B) that the pressure p is equal to the
force per unit area exerted by the system on the walls confining its constituents in
the region of space with volume V.

dM dA
o 9dM %@p —A |9

dA
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Experimental measurement of SES properties:
partial pressures and chemical potentials

constituent i

Pii
b 2
;“eime;i,’}g Mutual stable equilibrium across the
only to &7/ % semi-permeable membrane implies:
7

Multicomponent system

T =T;
wi(T, p,n) = (T, pis)

This measurement procedure
defines the partial pressure of
constituent i in the mixture.

L LRI

If we know the chemical potential of pure constituent i as function of
temperature and pressure, by evaluating it at the temperature and
partial pressure of the mixture we obtain the chemical potential of the
constituent i in the mixture.
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Construction of the fundamental relation from measurements of
Ta Py Cpy RT, Cpa and Ni,s (through pz’i,s)

For SES’s for which these ... if we know them as functions of T, p and n we can
properties are defined reconstruct (by integration) the fundamental relation.

(e.g. single-phase states)...
~ S=S(T,p,n)

ap =ap(l.p.n) E=E(T,p,n) >~ S=S(E\V,n)
KT =_KT(T,I3,”) > < V=V(T,p,n) _ !
Cp=Cp(T,p,n) G=G(T,p,n) <> H=H(S,V,n)
pi = wi(T,pn)  H=H(T,p,n)

For example, at fixed amounts n we can integrate these general relations:
(dE),, =(Cp — pVearp, JdT +(pxr —Tay )V dp
C P

(dH)p =Cp dT +{1-Ta, )V dp
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Review of basic concepts:
Characteristic SES functions
from

Legendre transforms
of the fundamental relation
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Changing variables of the fundamental relation by means

Legendre transtform

Legendre transform of a function of a single variable
Consider a curve described by the convex or concave monotonic function

_oF

Legendre’s observation is that we can describe the same curve also as the
envelope of the family of its tangent lines, by the function that relates the
slope A of each tangent line to its intercept L at y = 0.

Since the F'(y) is convex or concave and monotonic, A = A(y) is monotonic

and hence invertible. Using its inverse, y = y()\), we find the Legendre
transform of F' = F(y)
L=LA) = F(y(A) — Ay(A)

Notice that the Legendre transform of L = L(\) is the original F' = F(y).
In fact, denoting the slope of its tangent line by 7 and its intercept by G,

n\) = g—i (?95 gi y(\) — A% =—y(\) = n=-y
G =G(n) = L(A(n) —nAn)
G(y) = G(=n) = LAy)+y AMy) = F(y(Aw)))—Ay) y(A(y))+y A(y) = F(y)

where we used y(A(y)) = y since y = y(A) is the inverse of A = A(y).
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0 ¥y
2
1
A
L(/{l)
L(A;)
L(A3)
Examples
F(y) = e’
L(A) =X—AlnA\
F(y) = 1y
LX) =1\
Fly)=1y-A-y
LA)=3A-4-A
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Characteristic SES functions from

Legendre transforms of the fundamental relation in energy form

dE =T dS — pdV

E=E(S,V,n) fundamental relation
+p - dn
F=F A= — dL = —ydA+---
(Y1) |y 95 | =L(\ ) ydX +
B F=FE-TS dFf = —-SdT — pdV
E=ES,Vn) | S T _ F(T,V,n) - dn Helmholtz free energy
G=F—(—-p)V B
F=FT,Vin) |V —p =FE-TS5 +pV de = =5dl'+ Vdp Gibbs free energy
+p - dn
— G( ) 7n)
B H=F—-(-p)V dH =TdS+Vdp
E=ES,V,n) |V P _ H(S,p,n) - dn Enthalpy
G=H-TS
H=H(S,pn)| S T =FE-TS+pV S _SdT_:_ Vgg Gibbs free energy
=G(T,p,n) H
Fu; = G — p;n;
~ | | =E-TS+pV | dBu=-SdT+Vdp |
G=G(T,p,n) | n; L4 . gy + - A osmotic free energy
= Euz(Tvpa :u’ivn/)
Fu=G—-pu-n
B =FE-TS5+pV dFu =—-SdT + Vdp
G=G(T,p,n) | n n i - dy Euler free energy

= FBu(T, p, )
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Maxwell relations
— (g—g) o= T(S,V,n) and p = — (aE

I v )
PE\ [ *E L (o) _(or
050V ). ~— \ovas), 95 ) yn  \OV ),
S

= — (8F>v,n = S(T,V,n) and p = — (a—F)T,n =p(1,V,n)

oT

PF \ [ OF ~ (o) _ (99
orov ) — \ovor ). ) yn \OV)rn

From H(S,p,n), T = (%_IS{)p,n =T(S,p,n) and V = (—H)S =V(S,p,n)

PHN _(PHY (V) (0T
0Sdp),. \opdS ), a5 p,n_ I ) sn

From G(T,p,n), § = = (%), = S(.p,n) and V = (%) = V(T.p,n)

0*G B 0*G N 8_\/ B 0S
oTop) -~ \ 9poT n oT o N ap
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From E(S,V,n),

From F(T,V,n),




)

9*G B
ﬁTﬁnZ o N

PG\
apanz Tn! ;

)

P, M), S:—(@)’

)p

Maxwell relations

=S(T,pn), V = <%)Tn = p(S,p,n) and

(T, p,m) we obtain also these other useful relations:

0°G ) (8m> (83 >
= - — — Si(T7p7n)
ondT ), ., OT ) O ) gy 2

later we will
call this the
partial entropy
of constituent ¢

oT'/pn

0°G
on;Op T

(5 ),..” (&)
p— p— =
ap Tn anz T,p,‘nl-

) 7

U; (T7 p, n)

later we will

call this the
partial volume
of constituent ¢

82G 82G N a,LLZ . (9,%
onon; ) y on;on; ) oo O ) pm ~ \ On; Tpn!
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Characteristic SES functions from
Legendre transforms of the fundamental relation in entropy form

— 1 P
S=S(E,V,n) dS =g dE+pdV fundamental relation
F:F . )\: e dL: — d>\ PPN
(W) |y 95 | =L(\-) ydA +
J=5=—%
1 T — 1., p
S=S(E,V,n) |FE = — J(%, V,n) & EdT_i T(iix Massieu free entropy
:_% (T,V,,n) TH
K=J-2V
1 P =S-L£-2Lv dK = —Ed+ —VdZ | Horstmann-Planck
I=dgVom) |V T :Kg%,%,n) —2p - dn free entropy
= —TG(T,p,n)
Su =K + %,u ‘N
=5—7 %V d EdL -V dE
K:K(%,%,n) n —% +%u-n S == TJ:nV-dZ Euler free entropy
:Su(l p K T
N T T
— _TEU'( 7palJ')
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Maxwell relations

From S(E,V,n), 7 = (82),,, = #(E,V,n) and & = (53) . = &(E,V,n)
?2S\ [ 0°S L (o) _(or
oEOV ), \0VoE), OE ) v, \OV )y

From M(%,V,n), E = — g—ﬂ;)m E(L,Vin)and & = (24) = 2(1 V,n)

(ogv), = (avag), = (&)= +7 (&)
070V n_ OV O+ - oV T,n_ g 0T /) v

From J(B, 2,n), % = (&), , = %(B, 2,m)andV = — (3] = V(E,2,n)
27\ [ T L(9BN  _ (%
0E0Z) ~— \0ZOE) oV )pa or ) ..
o1 L ) T s )
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Review of basic concepts:

availabile energy with respect to
various types of thermal reservoirs

availability functions
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Available C€NErgy with respect to a
thermal reservoir with fixed volume and amounts

: O
System Reservoir Wik, m
A R —

Reversible g O /

Zmax(Ala A27 R)
State State S.e.s S.es ;Vfggz; m > 0if Wiy~ >0
A, > A, R,R

for AR < 0if I/Vé_> <0

Energy balance: (Ej — Ei') + (Ef — BEfY) = -W}5~
Entropy balance: (S3 — S7') + (S3* — ST') = Sgen
Fund.rel. for R:  EF — EF = Ty (SF — SF)
Eliminate (E£ — Ef) and (S5 — S{) from the above to yield:
Wis” = Bi' = By = T (81 = 85) = Tk Sgen = Wikdy = T Sgen

A A
Wik, = (%)) = (@%), =T7 -T9
where (QF)" = B4 — B — TR (S* — Sp) =T — T

we define the canonical availability function I' = F — Ty S

s2Rrev

Note that I' is minimum at state Ap with Tﬁ = Tg, where I'p = Fg
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Available C€NErgy with respect to a
thermal reservoir with fixed volume and amounts

Availability function I' = F — TR S:

R\A A 1A :OlfAleR
From (Q )1 =TI FR{>OifA17éAR
follows that I' > I'r for
any state of A that Et region of the states fixed values
of n and V

is not of MSE with R. - of thermodynamics

The minimum value I'p curve of the stable

is achieved only at equilibrium states

E ==
the MSE state Ap, 3 __E=E(SnV)
where I'p = FRp,
the Helmholtz free energy. e
ER:E(SR,R,V) i TR
Emin(n; V) — line E=TgS
I. '
| |
v : Fmin:FR:ER—TRSR
| |
| |
| |
_ | | g
S = {] 81 SR S
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Stability conditions deriving from the available energy with respect to a
thermal reservoir with fixed volume and amounts

If A isin state Ag (MSE with the thermal reservoir R), any possible variation
to another state A; is such that

ATA=T4 -T2 >0

For example, choose A; to be the neighbouring SES with AS4 = dS, and
the same values of V' and n, so that

AEY = EA(Sg +dS,V,n) — B4 = TrdS + 1d*E4 |y +
This implies
AT = AEY —TrASY = 1d’Eyp+--->0 = d*EYya >0

Again, choose instead A; to be the neighbouring SES with AE4 = dE, and
the same values of V' and n, so that

AS* = SA(Egp +dE,V,n) — Sa = T—dE +1d*Svn
R

This implies
AT = AEY — TRASY = —1d*S%yp+--->0 = d*S*yn <0
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Review of basic concepts: Consequences of the Maximum Entropy Principle:
Concavity of the fundamental relation

In a similar way, we can prove that the fundamental relation is concave
in all its independent variables, i.e., that in any SES the Hessian of the
fundamental relation S = S(E,n,V) is a negative semidefinite matrix

Hessian(S) =

s o
8E2 8E8n1
%S 0%S
0%S 0%S

on,0F 0On,0n;
%S 0%S
L OVOE 0Von,g

The full second-order differential of S = S(E,n,V) is

szE,n,V = (dE, dnl, 5 0

., dn,,dV') - Hessian(S) - (dE, dn,, ..

%S 0?5 T
OEOn, OFEOV
028 0928
8n18nr 87118‘/
%S 0?8
on?  On, 0V
%S %S
oV on, ov?z |
dn,, dV)T <0

From these properties it is possible to prove a number of general inequalities
that must be satisfied by stable equilibrium properties.
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Stability conditions deriving from the available energy with respect to a
thermal reservoir with fixed volume and amounts

If V and n cannot change for system A, the partial Hessian of the fun-
damental relation S = S4(E,n,V) is simply the second order derivative

525\
tialHessian(S)|nv = | 705
partialHessian(S")|, v <8E2>n,v

The partial second-order differential evaluated at state Ag is

(dE)* <0

D A
d>S%|, v = dE - partialHessian(S)|p v |, - dE = (a S>
R

8E2 n,V

Which, repeated for reservoirs at different Tz’s proves an important general
concavity feature of the fundamental relation of any system A

%S 1 /0T 1
(), 20 = =(G), ~masr - o=

Similarly, from d?>E4|,y > 0 follows that in general, for any system A,

TEN S0 o (Z) sy
8‘92 n,V— aS 'n,,V—
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Stability conditions and
LeChatelier-Braun principle

The inequalities just seen, implied by stability conditions, give body to the
general LeChatelier-Braun theorem (or principle).
So far, we have seen that

(@_5) <0 = (a_T) >0
OFE? ) v — OFE ) v —

2E\" oT
aS n,V aS n,V

Combined with the idea that 7' is an escaping tendency for energy,
we may interpret this as follows.

If we change a SES to another SES with higher energy (or entropy), the
temperature increases, hence enhancing the systems’ tendency to give energy
(or entropy) away. The increase of temperature can be interpreted as an
attemp of the system to counteract the externally imposed increase of energy
(or entropy) by enhancing its tendency to give energy (and entropy) away.
If the system is initially in MSE with a reservoir R, an injection (subtrac-
tion) of energy pushes its state away from MSE, but the consequent increase
(decrease) of its temperature, away from the initial Tg, favors a spontaneous
process whereby the system exchanges energy (and entropy) with R so as to
return to MSE.
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