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PROFESSOR: Thanks for coming. I know there's a problem set due. There's a quiz coming up on

Thursday. We won't have lecture on Thursday. But we will have a quiz in the

evening. And there will be a recitation section tomorrow, which will be a quiz review.

So, today's lecture is the last of the lectures in the shortest path module. And, unlike

previous lectures, we're going to be talking about optimizations that don't change

the worst case, or asymptotic, complexity. But improve empirical, real life

performance. Or potentially, and we can't prove this, but performance in the

average case.

And so we look at a couple of examples. The first one you've already done. You can

optimize Dijkstra when you're looking for a single target.

So, implicitly, we've assumed that we're solving the single source, any or all

destination problem, when we've looked at the original Dijkstra algorithm, and the

Bellman-Ford algorithm. Many a time, you're going to have a source, s. And you

want to find the shortest path to a specific destination, t.

And you're doing this in your problem set. And you can do some optimization. It

doesn't change the worst case complexity. But it reduces runtime. And then you

have a specific target. Especially if the target is close to you. And you don't have to

traverse the entire graph.

Obviously, the algorithm has to prove that the particular path that was chosen is, in

fact, the shortest path from s to t. But it's a fairly straightforward modification. And I

will go over it, but you're actually implementing it in PS 6.

We talked about bi-directional search. Again, something you're doing from a
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standpoint of breadth-first search. How can you get from one source to a

destination, by doing bi-directional Dijkstra?

And you can think of this as a frontier off shortest paths is being constructed from

the source, s, forward. And this backward frontier, you're falling edges backward, is

being constructed from the destination. And, effectively, when these two frontiers

meet, you're going to be able to discover shortest paths.

And, it turns out, it's not as simple as what I just described. And so we'll have to look

at that a little more carefully. So that is our single source, single target problem. We

won't cover this in 006.

But there's also this notion of all pairs shortest paths, which is something that 6046

covers. And that is something that says, well, I don't know what the source is. I don't

know what the destination is. For any pair of vertices, find me the shortest path from

s to t, given that pair.

And so that, of course, is more work than even the single source, all destination

problem because you're varying the source. All right? So those are the three

different shortest path problems.

And we've looked at that. And we're going to look at this today. And we looked at it

in the problem set. But we'll spend time, specifically on this one. And try and see if

we can do some coding optimizations, if you will, to improve run time.

All right? So, I emphasize that worst case complexity is unchanged for all of the

Dijkstra versions that we'll be looking at today. So I want to put up a pseudocode

that you've written code for at this point, which is the Dijkstra pseudocode. Because

we'll take a look at it, and modify it, and execute it.

So you have your set of vertices that you don't know the shortest paths to. So we do

have initialize is going to set d of s to be 0. And b of u, not equal to s, to be infinity.

And we have this set, Q, that we're going to process and continually extract the

minimum priority from Q. And, once we do that, we actually know the shortest path
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to you already. That's what the Dijkstra invariant is.

And the process of extracting u implies that we have to do a relaxation step that

updates the priorities. And also modifies the parent pointers. So there's also the pi

of v that is set to u. As well as d of v getting decremented. OK? So that's the Dijkstra

algorithm.

And one of the things that we can do, the straightforward thing, which is one line of

code literally, is to say that, if you know what the single target is, then you simply

stop if u equals t. So no need to stop when Q becomes null. Or, you don't get to the

point where Q is null.

You stop when you've lifted off the y vertex from Q. All right? And so, obviously, this

will run faster, assuming this check is a 0 time check. And that's really one

instruction, so you can think of it that way. And you will, basically, run faster for sure,

when you have a specific target.

It may be the case that your target is the last vertex that you find. And in that case,

you run no slower. All right? So that's something that you looked at. And that takes

care of the first optimization corresponding to single source, single target.

Let's talk about something that's a little more interesting, and non-obvious, which is

the notion of bi-directional search. And, in bi-directional search, we have s. And we

have t. And we have a bunch of nodes in between, corresponding to this graph

here.

And what you do is, you alternate search in the forward direction and backward

direction. So, you're going to do one step of Dijkstra, standard Dijkstra that starts

with s. And goes forward.

And so, you could imagine that you're forward search in the first step, you're going

to pick the vertex, s, off of Q. And you're going to process the edges that come out

of s. And that would correspond with these two edges. And so that's one step of

forward search, going forward.
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And then you stop with the forward search, and you do a step of backward search.

And so, you go backward search, and I'll explain exactly what this means, backward

search from t. And the important thing is that you're following edges backward.

So that means your data structure has to, essentially, have these edges that can be

traversed in either the forward direction, or the reverse direction. So that's

something to keep in mind. But what will happen here is simply that your first frontier

of backward search, t now, in the backward search, is the minimum priority.

So , we're going to have to have two priorities corresponding to s in the fourth

search, where that's a straightforward one. v of s equals 0. And we should think of it

as d of f s equals 0. And we have d of b t equals 0. And these subscripts correspond

to these two different priorities. And it's exactly complimentary.

Only the source, s, in the forward search, has 0 priority in the beginning. Everything

else has infinite priority. Only the target, or destination, has 0 priority in the

backward search. Everything else is infinity.

And you go forward, backward, forward, backward. And so on. And the question is,

when do you stop? And we have to talk about that. And, it turns out, it's not a

perfectly straightforward stopping condition. But it's something that will make sense,

hopefully, when I get around to describing it.

But, having said all that, let's just put down all of the different data structures that we

have to have. And it's kind of a doubling of the data structure, right, because just

like I double the priorities, I also need two different min priority queues,

corresponding to Q f and Q b. And, as I said before, these edges have to be

traversable in the backward direction.

So this edge, in the graph, goes this way. But you're going in the backward

direction, as you are growing your backward frontier. OK? That's important to

understand. So let me put down all of the specifics associated with these data

structures.

df u correspond to the distances for the forward search. And db u correspond to the
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distances for the backward search. OK? And, of course, we're going to have to have

priority queues, plural.

Qf corresponding to the forward search. And Qb corresponding to the backward

search. And in initialize, as I said before, we're going to initialize df s to be 0 and db

t equals 0. And then everything, the df's and the db's, are going to be infinity.

All right? OK. Great. So that's what we have here. Now, first question. Roughly

speaking, as I said, you can imagine intuitively that you're going to terminate the

search when these frontiers meet, OK? Clearly, you can't terminate it when these

frontiers look like this, OK. So that's the intuition.

And you see that for the [INAUDIBLE] first, as well, in your problem set. But in the

context of Dijkstra, single source, single target, can someone tell me what the

termination condition should be by looking at the code? I want a more specific, or a

more concrete, termination condition that I can actually code up, as opposed to

saying, the frontiers meet. Which, you know, I don't know how to code. OK?

Someone else? All right, go for it.

AUDIENCE: When there's some node that can keep track of two different cost values from--

PROFESSOR: The Qf and the Qb, that's correct. And, somehow--

AUDIENCE: Somehow they're cost runs to get there from the start and from the [INAUDIBLE].

PROFESSOR: OK. It's close. It's not quite something I can code up. Someone want to improve

that? Someone want to improve that? I want something very, very specific.

Someone? Go for it.

AUDIENCE: The node has been extracted from both Qf and Qb.

PROFESSOR: The node which has been extracted from both Qf and Qb. So, the reason I didn't

quite buy your answer was, finite part is obviously correct. But I wanted a specific

condition that says, I'm going to do extract-min, just like I said when I extract-min

and u equals t, I stop with the single source, single target.
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In the bi-directional case, I need to pull out a node from Qf. And pull out a node

from Qb. And then I get to stop, all right? So, you get a cushion.

You don't need to feel too bad because I think you already have a cushion. Yeah. I

know that. I know everyone who has cushions. Right. Actually, I don't. But I'm going

to pretend I do.

So, the termination condition is that some vertex, and this is correct, some vertex, u,

has been processed, both in the forward search and the backward search. OK?

That corresponds to the frontiers meeting. But, specifically, it's been deleted, or

extracted from both Qf and Qb.

So that's actually the easier question. Visit a harder question, which is how do we

find the shortest path after termination from s to t? OK? And I should say

specifically, that-- and I forgot to put this up, which I should-- that we're going to

have to have pi f and pi b, which this is the normal data structure.

And the pi b is following the edges backward. So, in some sense, the predecessor,

in the case of pi b, what you're saying is, on this node here-- which I'll call v2 for

example-- is, if I'm going to choose this path here-- and I need to obviously choose

this edge here in any shortest path that gets to t, right?

Because that's the only edge that goes to t. And so, what I'm saying here is that a

predecessor of pi b t equals v2. OK? That make sense?

And then over here, if this was v1, then I would have pi f v1 equals s. Right? That

make sense? Everybody buy that? All right, so how do I find the shortest path from

s to t, after these frontiers have met, and I've terminated the search? How do I do

that? Someone? Go ahead.

AUDIENCE: Well, given that data structure, you start at your t. And you keep on going back to

the [INAUDIBLE] until you get to the point where they've peaked. Then you use the

pi f to go from that node, all the way back to s.
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PROFESSOR: So, what I'm going to have to do is-- but where do I switch, is the question. Where

do I switch from pi f to pi b? There has to be some point where I switch from-- Yeah,

go ahead.

AUDIENCE: At the meeting point of the node that was [INAUDIBLE] Q [INAUDIBLE].

PROFESSOR: All right. Is that what you were saying, too? OK. So the claim is, if w was processed

first, extracted from both Qf and Qb, then find the shortest path using pi f from s to

w. Right? So, you can use pi f to get from s to w.

And the way you do that is by applying pi f to w. And then keep applying it until you

get to s, OK? This is normal search, right? Everybody knows this. You coded it. So I

hope you know it.

And then, we go find shortest path using pi b, right? And you're going to constantly

apply pi b-- and this is the backward path-- from t to w. And this follows the edges

backward, all right? This sounds pretty good? Everybody agree with this? Anybody

disagree? Yeah.

AUDIENCE: Pi b. If [INAUDIBLE], pi b would be like pi b b2 equals t, because b2 [INAUDIBLE]--

PROFESSOR: That's a good question. I might have done this wrong. So, in the backward search,

this can get pretty confusing. So what do I have here? I want to follow the

predecessor. You're exactly right. You're exactly right. Thank you. Thank you for

pointing that out.

All right, so what I have here is when I look at this path that goes this way, all right?

I'm going to look at the path that goes this way. s is the predecessor of v1. v1 is a

predecessor of, let's call this v3. v3 is a predecessor of v4. I'm just talking about the

regular forward path.

We have s to v1. v1 to v3. v3 to v4. All the way to t, right? So what I have here is

correct. The predecessor of v1 is s. The predecessor of v3 would be v1. So I could

write, pi f v3 equals v1. Et cetera. Now, let's just forget about the forward path, and

let's just talk about the backward path.
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In the backwoods path, I want to be able to construct this backward path. It's got to

be the reverse of what I have, OK? And, in that case, what I'm saying is that I want

to move in this direction. So pretend that I've made the edges flip, OK?

So, in that case, if I pretend that this edge is like that, and then I just apply the

regular predecessor relationship, then t is the predecessor of v2. And that's the

point you're making. OK? t is the predecessor of v2. And so, my apologies.

I have pi b v2 equals t. And, if I follow this edge here, then I'd have the appropriate

relationship. But let's just stick to this one because that's the simple example.

I don't quite know whether this edge is going to be part of my shortest path or not. It

might be. And that's something that we'll compute. But what I have here is the

predecessor relationship corresponding to the backward edge.

And so, that's like flipping this edge. And, hopefully, that makes sense now. Thanks

for pointing that out.

And so, let's talk about what happens here. We know what happens in the forward

search. You've done that before. In the backward search, what happens is that I

need to start-- according to this condition-- just like in the forward search, I found a

w. And I continually applied pi of f to w.

So, this is apply pi of f to w. And then do pi of f pi of f w. And so on and so forth. And

that's what you do in order to construct the shortest path. People buy that? Right?

And what I want to do here is apply pi b to w. And then, pi b of pi b to w. And so on

and so forth, till I get to t. Right? And this one, till I get to s. Right?

So, what I wrote here, s to w, t to w. There's nothing incorrect about that. What's

important to understand is the application of the pi f and the pi b. Both, according to

this, start with w, which is this vertex that caused the termination to happen. All

right?
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So, people buy this? Any other questions? All right. Turns out this is not quite

correct. OK? This is not quite correct, right? And not because of the pi b inversion

that I had before, right?

So what have I said, so far? It makes perfect sense. It says, I have a vertex that

caused the termination. I'm going to call it w. OK? And that vertex is on the

intersection of these two frontiers, OK?

And I'm going to use that to construct the shortest path by constructing two sub

paths, using the forward pointers and the backward pointers. All right? So all of that

makes sense except, it turns out, that w may not be on the shortest path. OK?

And I'll show you an example where w is not on the shortest path. All right? So that's

at a real subtle condition. So we have to actually augment the termination condition.

Or, we have to do something more than the termination condition.

So, I will tell you right away, the termination condition is correct. OK? And so, the

guy who got the cushion, deserved the cushion. OK? So the termination condition

as correct.

You are going to run Dijkstra 's ultimate forward search and backward search. And

you're going to terminate when a particular vertex, call it w, is going to get pulled out

from both Qf and Qb. All right? What is incorrect here is the use of w to construct

the shortest path. All right?

It turns out, we have to do a little more work to go find the shortest path, after we've

terminated. And w may not be on the shortest path. All right? Any ideas as to what

we might do? This is a bit of an unfair question, but certainly worth a cushion.

How do you think we can fix this? If w is not on the shortest path, what do you think

would be on the shortest path? Is there a way of finding this vertex, so we can break

this up?

We absolutely have to use both pi f and pi b. There's no getting away from that

because these two frontiers have just barely collided. The instant they barely
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collided, we've stopped. OK?

So we can't use pi f all the way from s to t. We can't use pi b all the way from t to s.

These frontiers have just barely collided. OK? So what happens if w is not on the

shortest path? And why is that the case? Yeah.

AUDIENCE: I just had a question. Are all the edge weights identical? Or are they--

PROFESSOR: So, the edge weights don't change. There are no new edges. The way you want to

think about is that, you can traverse the edges backward. And so, it's not like there

are two edges here.

Now, you could fake it, and have two edges with exactly the same weights over

here. But are you saying there are edge weights in the graph, all identical across

the edges? Or are you asking about the forward search versus the backward

search?

AUDIENCE: That's what I was asking. Is each edge weight the same in the graph.

PROFESSOR: No. They're using Dijkstra. The edge ways can be arbitrary. But they're non-

negative. OK? So that's the usual Dijkstra requirement. They could be real

numbers. They could be irrational numbers. They could be whatever. But they're all

non-negative. All right?

Now, in the backward search and the forward search-- just to make that clear--

while I've drawn this particular edge, that weight hasn't changed, OK? That weight

had better be the same. OK? All right, so I'll show you an example.

And we'll take an example, a fairly straightforward example, it turns out. It took a

while to concoct this five node example that shows the idea here. But what we're

going to do is, take a look at the termination condition in a specific case, where

we're going to do this alternation of forward and backward search. And we'll see,

when it terminates, as to what the correct way is to construct the shortest path. All

right?
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And, as I said before, the termination condition is correct. It's not like we stop too

early. When one of those nodes gets off from Qf and Qb, you get to stop.

So that's my s, over here. And I have a fairly straightforward graph. I have 5, 5, 3, 3,

3. So we don't need a computer program to tell us that the shortest path from s to t

is the path with three edges that goes on top, OK, which has a weight of 9.

All right. So this is a forward search. And I'm going to call all of these vertices

names. So I have u prime. t. et cetera. OK?

So, in the first step of the forward search, I'm going to be able to set-- oh, I'm sorry.

This one is a w. I'm going to be able to set df w equals 5. And df u equals 3. And,

obviously, df of s equals 0. And I'm not going to bother writing the infinities. It's just

going to clutter up the board, all right?

So, stop me if you have questions on anything I'm writing here. So that's a forward

search. Now, let's do the first step of backward search, right? Alternate, remember?

Alternate forward search, backward search, forward search, backward search. And

I'm just going to write this out again, so bear with me, because I think it'd be clearer

if you see this graph many times. As opposed to my erasing what I've written.

So I've got an s, here. t there. u. u prime. w. And I'm going to hash this vertex

vertically because that's my backward search. And db of t equals 0. OK? And I'm

going to follow this backward, and this backward.

And my weights are the same. It's the same graph. So I'm going to have d of b u

prime equals 3. And db of w equals 5. And I haven't seen u yet. I haven't seen s yet.

And so, all I've done is mark these two. All right?

So far, so good? Again, stop me if you have questions. We've got, obviously, a

couple more steps to go here. And let's keep going. So now we do a forward search

again.

Yeah, that's fine. That's this hash that way, just to make sure. This is s, u, u prime,

w, t. And what I have now is, I'm going process this vertex in the forward search
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because I have a choice in the forward search to either pick w or w.

This clearly has lower priority because df w equals 5. And df of u equals 3. So

extract-min is obviously going to pick u. And it's going to process this edge now,

after extract-min. And I'm going have df of u prime equals 6. OK?

AUDIENCE: It's 3 over there.

PROFESSOR: Oh, it's 3 over there. Thanks. Good. So, so far, so good? Yeah? All right. So now, I

go to the backward search. And again, I have s, t, u, u prime, w.

I'm going to go ahead and hash this. This has been hashed horizontally. The hash

horizontally means that it's been removed from Qf. The hash vertically means that

it's been removed from Qb.

And so, when I look at this, and I do a backward search, I'm going to hash this. And

I'm going to set db of u prime equals 3. And I have db of w equals 5. So, that I

already had.

And so, when I have db of w equals 5 and db of u prime equals 3, then, obviously,

I'm going to pick the one with the min priority. This corresponds to this one. And

what it's going to do is, it's going to go process that and set db of u equals 6. All

right?

So what happened here simply was that I picked this vertex off of Qb because that

was the min priority. And all I did was relax this particular edge in the backward

direction. And said db u equals 6.

All right? Almost there. Any questions so far? Any bugs you noticed so far, in what

I've written? Yeah, back there, question.

AUDIENCE: [INAUDIBLE].

PROFESSOR: OK. Good. So people agree with this. All right, one more. One more board to draw.

And we'll be done. We will have terminated. All right, so getting pretty close.
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So I'm set up this way. Oh, shoot. Sorry. This is horizontal. So, now I'm looking at it,

and I've taken care of these two. And I'm talking about the forward search here. So

this is, again, the forward. And that's the backward.

And now I'm doing a forward again. And my only choice, now, is to pick the w vertex

off of Qf. Right? Because df w equals 5. And this one has already been processed.

df of u equals 3. But I've hashed that. And so I've gone ahead and processed that

vertex.

And this one, df of u prime equals 6. So, in Qf, I would be comparing u prime and w.

And I would take w, OK? People buy that? That's because, I guess you by the fact

that 5 is less than 6. I hope.

So that's what happens in the step of forward search. And then you go ahead and

process this. You're going to set df of t to be 10. OK?

And now you're starting to see why there may be a bit of a problem with our

shortest path computation, right? Maybe. All right? Everything good? All right.

So what have I done here? I've removed w from Qf. OK. I've removed w from Qf. All

right. Now, let's look at the last step here, of the backward search.

s, t. And so, this was hashed. That was hashed. And, if I look at what I have here, I

have db u prime equals 3. df u prime equals 6. This was df w equals 5. db w equals

5. And so on and so forth.

Again, you compare w. And you see that db w equals 5. And df u prime equals 6. So

therefore, you will pick w. OK?

You will pick w, and remove it from Qf. So remove w from Qf. All right? And process

it. And what you end up with is df of s equals 10. OK?

That's what you get because this is a 5. And that's a 5. OK? People see the problem

here? What's the problem? Someone articulate the problem.

13



AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah. I mean, so, what I have so far is, I've terminated. But it looks like I end up with

d of s. If I look at it from a standpoint of the forward weight, I got a 10 for t.

I get db t equals 10. If I look from a standpoint of the backward weight, I get db s

equals 10. OK? And we all know that the shortest path should be 9. OK.

So what happened here? Well, we terminated according to this condition. We

terminated when w was pulled off from Qf and Qb because that was the short path,

in some sense, in terms of number of edges, right?

It was only of length 2. And so, then the frontiers collide. This is a subtlety in the

algorithm. The frontiers collide at some vertex, regardless of the weights of the

edges. Because we are alternating the forward search and the backward search, in

effect, the frontiers are going to collide on the shortest length path. Right? That

makes sense, right?

So this example is set up so the shortest length path is not the shortest weight path.

OK? So we can't take the w and use pi f to construct part of the path, and use pi b

to construct the other part of the path. And find the shortest weight path. We would

get something incorrect. Right? We would get a path of length 10, in this case, if we

did that.

So how do we fix it? How do we fix it? One little termination condition doesn't

change. How do we fix it? Someone? Back there. Or, actually, you.

AUDIENCE: Ordinate based on the weight.

PROFESSOR: Ordinate based on the weight. So exactly how would we do that?

AUDIENCE: At each point you take the one that has the [INAUDIBLE].

PROFESSOR: But that's what we're doing now, right? So, are you changing the alternation

between the forward search and the backward search?
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AUDIENCE: Yeah.

PROFESSOR: You're saying that you're going to do more forward searches, as opposed to

backward searches?

AUDIENCE: If the overall cost is lower.

PROFESSOR: Overall cost is lower. You know, if you code it up, you get to keep this. If I want a

slightly different, simpler fix because I think what you're saying here-- and I like the

idea. I actually do like the idea.

You're saying you're going to not do strict alternation. But you're going to do some

sort of weighted alternation, from what I can tell, based on the weights. OK? And I

think there's an algorithm there that's correct. OK?

I probably won't be able to prove that it's correct to myself in five minutes. OK. Or 10

minutes. But let's talk about that offline. And see if there's a way.

I'm a little worried that, if you have positive rational numbers, and you've got root 2,

square root of 2, and pi. And the transcendental number corresponding to these

weights, that this weighted alternation is going to be a bit hard to implement

correctly. But it's a neat idea. I would actually like a follow up on that. Something

that's a little-- yeah, back there.

AUDIENCE: Can you look at the neighbors of all the nodes that are in your forward [INAUDIBLE],

and see if any of their neighbors are in backwards [INAUDIBLE]. And see if that's

going to give you a shorter path than the one that you pulled out previously.

PROFESSOR: That's correct. That's almost exactly correct. I won't bother throwing it over, but this

is yours. You want to catch it?

AUDIENCE: I already have one.

PROFESSOR: You already have a cushion. All right. So how about I just throw it. And anybody who

wants to catch it gets it. How's that? Whoa.
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All right. I didn't hit anybody. Anybody who wants it, who doesn't have a cushion.

Right. We've got all these cushions in my office, and Eric's office. We've got to do

something about them.

They're actually not that great. You know, it's bit of an issue, I understand. You

know, we've got to do Frisbees next time, or something. I can see why you're not

enthusiastic about this. Right? OK.

All right, so the answer was, in fact, correct. And let me write it up over here. So we

had to do a little more work. We terminate properly. We do the strict alternation. But

we have to do a little bit more work. OK.

And the work we have to do is summarized very neatly by saying, we want to find an

x, which is maybe different from w, possibly, that has minimum value of d of x plus

db x. All right? So we have to actually look. And this x is going to be neighboring.

But we don't really need to specify that. What we say is, you're going to have to look

at Qf and Qb. And it's possible that w is the one that has minimum df w plus db w.

But, clearly, that wasn't the case in this example.

So, in this example, w caused the termination. But now we need to scan. And

there's only two other vertices that are interesting here, which are u and u prime.

And either of those will fit the bill because we see that df of u plus db of u equals 3

plus 6 equals 9. And df of u prime plus db of u prime equals-- I'm sorry, I should

have out db here. db of u prime would be 6 plus 3 equals 9. Right? So both of these

are less than 10.

And so we had to pick one of these as our x. OK. And if you pick one of these as our

x, then, at that point, we don't do w here. We do x. OK? Let me write it as x. It looks

like a cross here.

So that's what happens. So this small little tweak. Do the alternation. Do the

termination. Once you do the termination, go look and see if you can minimize the

shortest path length by finding an appropriate x.
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Which has the minimum sum of the forward and the backward priorities. And then,

you're in business. And then, everything works. OK?

All right. Great. So, so much for bi-directional search. Let me talk a little bit about

heuristics that people use to modify the graph so things run faster in practice. So, in

particular, you can think about the goal directed search, or a star, if you're taking

6034. And there's some commonality between what I'm going to talk about here,

and that material.

The basic idea is that we're going to modify the edge weights in such a way that you

go downhill toward the shortest path. And so, the priorities are modified heuristically.

So things run a little bit quicker. You're trying to prune the search here.

So we're going to modify edge weights. And we have to be careful when we do this,

obviously. We don't want to do things that are incorrect.

But the way we want to modify the edge weights is by having some sort of potential

function that corresponds to lambda. And, if the edge is between u and v, then we

have an equation given a lambda that says, the new w, w bar, is w u, v minus

lambda u plus lambda v. OK?

Now, we have to be a little careful here, with respect to the choice of lambda. But

the basic idea, in terms of lambda, is that, suppose you have something like this,

where you have a source vertex, s. And you're again trying to do a single source,

single target going to t.

And let's say I have an edge of weight 5 going out and an edge of a 5 going out this

way. Is there a way that you can guess that this is the edge that is more likely to be

on your shortest path? As opposed to this other edge?

Essentially increase the potential of this node, all right? So this node here may be

the node t2. And this node may be the node t1.

You want to increase the potential of node t2, such that, you're actually trying to go

uphill when you go this way. And this goes downhill. And that has the appropriate
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modifications on the edge weights, such that the Dijkstra algorithm is steered

towards going downhill. And going down this path. And it terminates a little bit

quicker. Right?

It doesn't change as asymptotic complexity. It just makes things run, in practice, a

little bit faster. If you choose the right potentials. Right? Feels like magic.

How do you know how to increase the potential? What would you increase the

potential for? What nodes do you want to make uphill? What nodes do you want to

make downhill?

So there's a bunch of questions. I'm not going to get into a lot of details. But I will tell

you a couple of things.

I'm going to give you, really quickly, a simple example that is both correct, in terms

of the actual shortest path you will get is the correct one. And a particular

mechanism off modifying the potentials that uses landmarks. Right. So the way we

are going to do this is by saying that any path wp is going to get modified based on

its destination and source.

So the only way that we can use the potential method is by ensuring that all of the

shortest paths between any pair of vertices, we're only concerned about single

source, single target here. But, in general, it's a good thing to not change any of the

shortest paths. So what used to be a shortest path should stay the shortest path.

And the way you do that is by having a potential function that, if you have an

arbitrary path, essentially-- and this is a path from s to t. That you subtract out

something based on a function of the vertex. In this case, you have s. And, in this

case, you have t.

So the nice thing is that, any path from s to t is going to get shifted by the same

amount, corresponding to this additional term here. So what that means is that the

final shortest path that you discover will be the correct shortest path. You just may,

hopefully, discover it faster. All right?
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So that's the correctness check. And I'll put this in the notes. And maybe the TAs

can cover it in the section. But one way of getting this potential function is to use

what's called a landmark.

And so the basic idea is that you have a landmark, l, which is a vertex belonging to

v. And we're going to pre-compute delta of u comma l. So, for any input vertex, you

want to find the shortest path to this landmark.

So it's like, change the source, but the destination stays the same. And the potential

lambda t u is defined as delta of u, l minus delta of t, l. OK? So you have the source,

s. You have a destination, t. And now you have a landmark, l.

I'm going to pre-compute delta u,l for all u belonging to v. And I'm also going to pre-

compute, for a given t, delta t, l. So that's just a single t. So that's just one

computation. This one is much more computation.

And, if I use this potential, you can show that it's correct, using the triangle

inequality. And this is not a heuristic. With the correct choice of landmark, Dijkstra,

empirically, will run faster.

So, if you know for sure that you need to go through middle America to get from Cal

Tech to Boston-- and there's one particular landmark you want to go through--

Texas or something. And you pick Austin, Texas, then you can do this computation.

And maybe Dijkstra runs 2x faster, 20% faster. All right? I'll put the argument about

correctness, and the specifics of these things, in the notes. And you can take a look

at it offline.

19


