| Ses # | TOPICS |
|---|---|
| L1 | Probability Models and Axioms (PDF) |
| L2 | Conditioning and Bayes’ Rule (PDF) |
| L3 | Independence (PDF) |
| L4 | Counting Sections (PDF) |
| L5 | Discrete Random Variables; Probability Mass Functions; Expectations (PDF) |
| L6 | Conditional Expectation; Examples (PDF) |
| L7 | Multiple Discrete Random Variables (PDF) |
| L8 | Continuous Random Variables - I (PDF) |
| L9 | Continuous Random Variables - II (PDF) |
| L10 | Continuous Random Variables and Derived Distributions (PDF) |
| L11 | More on Continuous Random Variables, Derived Distributions, Convolution (PDF) |
| L12 | Transforms (PDF) |
| L13 | Iterated Expectations (PDF) |
| L13A | Sum of a Random Number of Random Variables (PDF) |
| L14 | Prediction; Covariance and Correlation (PDF) |
| L15 | Weak Law of Large Numbers (PDF) |
| L16 | Bernoulli Process (PDF) |
| L17 | Poisson Process (PDF) |
| L18 | Poisson Process Examples (PDF) |
| L19 | Markov Chains - I (PDF) |
| L20 | Markov Chains - II (PDF) |
| L21 | Markov Chains - III (PDF) |
| L22 | Central Limit Theorem (PDF) |
| L23 | Central Limit Theorem (cont.), Strong Law of Large Numbers (PDF) |
Lecture Notes
Course Info
Instructor
Departments
As Taught In
Spring
2006
Level
Learning Resource Types
theaters
Simulation Videos
grading
Exams with Solutions
notes
Lecture Notes
assignment
Problem Sets
Problem Set Solutions