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Then the potential energy is

− 1

2

〈∑
i

~Fi · ~r

〉
=
P

2

∫
~ri · d ~A (56)

and n = 2. From the divergence theorem∫
~ri · d ~A =

∫
~∇ · ~rdV

= 3

∫
dV = 3V .

(57)

The virial theorem gives
0 = 2 〈K〉T − 2 〈Vtot〉

= 2
3

2
NkT − 2

P

2
3V

(58)

so
NkT = PV . (59)

2.B Relaxation times

The virial theorem gave us some first insight into the dynamics of galaxies. Now we will
show that stars are collisionless, i.e. that two-body collisions are rare in galaxies. Since this
is true, we can describe the distribution of stars as a smooth density field and gravitational
potential.

Frequency of strong encounters between stars:
Goal: estimate the change in velocity δ~v by which the encounter deflects the velocity ~v of
the subject star.
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We assume that |δ~v|/|~v| � 1 and that the field star is stationary. This means that δ~v is
perpendicular to ~v since the accelerations parallel to ~v cancel out as the subject star passes
by the field star. We calculate δv = |δ~v| by integrating F⊥:

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)3/2
=
Gm2

b2

[
1 +

(
vt

b

)2
]−3/2

. (60)
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Newton’s law m~̇v = ~F gives us the change in the perpendicular velocity

δv =
1

m

∫ +∞

−∞
dtF⊥

=
Gm

b2

∫ +∞

−∞

dt[
1 +

(
vt
b

)2
]3/2

=
Gm

bv

∫ +∞

−∞

ds

(1 + s2)3/2

=
2Gm

bv

(61)

using s = vt
b
. Thus, δv is roughly equal to the acceleration at closest approach, GM

b2
, times

the duration of the acceleration, 2b
v
.

Strong encounters:
An encounter is strong if δv ∼ v (which also causes the calculation to break down). This is
also when a star will have its path deflected by ∼ 90◦ ≡ bstrong.

δv ∼ v ⇔ b . b90 =
GM

v2
≡ bstrong . (62)

The cross section for strong encounters is

σstrong = πb2
strong (63)

From the virial theorem, we have

v2 ∼ GM

R
=
GNm

R

⇒bstrong ≈
2R

N∗

(64)

so we get:

σstrong ≈
4π

N2
∗
R2 (65)

which is small since N ∼ 1011. This means that the probability p of a strong encounter over
a single crossing of a star through a galaxy with an average number density of stars n is

p = nσstrongR

=
N

4
3
πR3

4πR2

N2
R

=
3

N
∼ 10−11 .

(66)

This is a tiny probability! So there are likely no strong encounters in a galaxy. For globular
clusters, N ∼ 104, so strong encounters are more common.
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What about weak encounters?
We have seen that strong encounters are rare, i.e. they practically never happen. Neverthe-
less, if a star crosses a galaxy many times, it will encounter many weak encounters. Each of
those will slightly perturb its velocity until v⊥ ≈ v. The time it takes for this to happen is
the relaxation time of the system.

Multiple weak encounters

L*
log(L)

log(ɸ)

!

F⊥

x vSubject 
star m

r "
Field 
star m

b

A star makes a random walk through a galaxy. Its total deviation from its path is the sum
of each of its encounters with other stars. For N encounters,

δv2
tot =

N∑
i=1

(δvi)
2 . (67)

The strength of each encounter depends on the impact parameter b. The number of encoun-
ters N within (b, b+ db) is

N = (2πbdb)︸ ︷︷ ︸ (v∆t)︸ ︷︷ ︸ n︸︷︷︸
area length density .

(68)
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We then have∑
i

(δvi)
2 =

∫ bmax
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=
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(69)
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Now we determine the limits on the integral:

bmax ≈ R ≈ 10 kpc

bmin ≈ bstrong =
2R

v∗
= 10−10kpc (0.01AU)

(70)

so ∫ bmax

bmin

db

b
= ln

(
bmax

bmin

)
≡ ln Λ (Coulomb logarithm)

= ln

(
10 kpc

10−10 kpc

)
= ln

(
1011

)
≈ 25 .

(71)

Relaxation time:
We define the relaxation time trelax through∑

i

(δvi)
2 ≈ v2 ⇒ 8πG2m2n

v
ln Λtrelax

⇒trelax =
v3

8πG2m2n ln Λ
.

(72)

We now compare this to the dynamical time torbit ≈ R/v of the system:

trelax

torbit

=trelax
v

R
=

v4

8πG2m2n ln ΛR
, . (73)

Using the virial theorem v2 = GM
R

and number density n = M/m
4π
3
R3 gives us:

=
(GM/R)2

8πG2m2 M/m
4π
3
R3R ln Λ

=
M

8πm 3
4π

ln Λ

=
N

6 ln Λ
=

N∗

6 ln
(
bmax

bmin

) =
N∗

6 ln
(

R
2R/N∗

)
∼ N∗

6 lnN∗

(74)

which is very large! Thus, stars are orbiting in an unperturbed collective potential (colli-
sionless)!

2.C Collisionless relaxation

Relaxation occurs in two ways within a galaxy: the collisional gas with interactions reaches
a Maxwellian distribution through two-body interactions, but the collisionless systems (stars
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and dark matter) must relax through a different process otherwise galaxies and galaxy clus-
ters would not reach a relaxed state within the age of the Universe. We say a system is
relaxed when its coarse grained phase-space distribution function does not change any more.

Collisionless relaxation processes:
Phase mixing:
The coarse grained phase-space distribution function is distributed over time so doesn’t
change with time.
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Violent relaxation:
Since energy in the stellar and dark matter systems in galaxies can’t be efficiently exchanged
through collisions, we must find another way for energy exchange. The energy of an individ-
ual star (specific energy) is:

E =
1

2
v2 + φ . (75)

Then the change in energy over time is

dE

dt
=
∂E

∂~v

d~v

dt
+
∂E

∂φ

dφ

dt

= −~v · ~∇φ+
dφ

dt

= −~v · ~∇φ+
∂φ

∂t
+
∂φ

∂~x

d~x

dt

= −~v · ~∇φ+
∂φ

∂t
+ ~v~∇φ

=
∂φ

∂t

(76)

Thus, the only way for a star to change its energy is by having a time-dependent potential.

To think of this intuitively, we can consider an object moving through a potential well. If
the potential is constant with time, the particle will recover the same energy as it comes out
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the other side and there is no relaxation. If the potential grows with time, the particle will
need to expend more energy to cross it and will not have enough energy to get back out of
the potential well, thus losing energy. If the potential shrinks with time, the particle will
gain energy as it crosses the well.
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As a galaxy or cluster forms, the gravitational potential changes significantly as mass accretes
and collapses into a halo. Averaging over all particles, the timescale for violent relaxation
tvr is

tvr =

〈(
dE
dt

)2

E2

〉−1/2

=

〈(
∂φ
∂t

)2

E2

〉−1/2

∼

〈
φ̇2

φ

〉−1/2

(77)

where in the last step we used the time-dependent virial theorem (see Lynden-Bell 1967).
This occurs on roughly the same timescale as free-fall since this is the timescale at which
the potential changes during collapse. It’s very fast, hence ‘violent’ relaxation!

3 Modelling galaxies

So far, we have looked at the basic dynamical properties of galaxies. Now we discuss the
main ingredients of modelling galaxies:

• potential-density pairs (the common potential)
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