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parameter is rogg, the distance which has an enclosed density 200 times the cosmic
critical density p. (which we will cover later) or Myyg = 200p0§7r7‘§’00.

The concentration of a halo is

7200 (100)

Central result:
The second parameter c is only a very weak function of mass and for fixed mass, and
it is the same for all halos in that mass range.

In (1 + z)

a

¢ = —4mwpoa’ + constant (101)

Related topics:

— Core-cusp problem: From observations of stellar dynamics, the inner profile of
halos flattens to a slope ~ 0 (core) instead of —1 (cusp). This is possibly due to
supernova feedback, but it could also be resolved through modifications of cold
dark matter.

— Diversity of shapes problem: Observationally, halos display diversity in the shapes
of their profiles with some cuspier and some more cored profiles whereas, in simu-
lations, halos are universally described by the NFW profile and self-similar across
mass ranges (the profiles look the same when scaled).

— Missing satellite problem: Simulations produce more satellite halos than there are
observed satellite galaxies. It’s possible that not all subhalos form stars, so we
need to be able to find “dark subhalos." This could be done by looking for disrup-
tions in stellar streams or through gravitational lensing. Recently, however, there
have been many more satellites found as our observational techniques improve.

— Too-big-to-fail problem: This is related to the missing satellites problem, where
the number of predicted large halos doesn’t match the number of large galaxies
observed (but the total number of satellite halos is consistent). The gravitational
potential of these galaxies, however, is large enough that they should have col-
lected enough gas and stars to form galaxies and maintain their evolution (e.g.
not lose the stars through stripping).

3.B Orbits

Now that we have looked at potential-density pairs, we can study orbits in these potentials.
Orbits refer to the motion of stars through 6D phase space (#(t), ¢(t)). Often, the integrals
of motion restrict the dimensionality of the orbit (1 per integral of motion).

Integrals of motion:

The orbital energy FE is:
1 1
E = 51)2 + o(r) = 57'“2 + o(r) (102)
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3. MODELLING GALAXIES

Taking the time derivative (for a time-independent potential) gives us

de ... d¢. .. ..
E—’/‘T—FET—TT’—TT—O (103)

which implies that the energy is constant along the orbit.
The angular momentum L (for a central force potential) is:

L=7xT (104)
and the time derivative is

ar. . . .
E:FXF+FX?:FX(F(r)éT):O (105)

so angular momentum is also constant along the orbit. This means we have a 4D phase
space instead of 6D for time-independent, central force potentials, which is often a good
approximation.

Central potentials: ¢ = ¢(r)
Goal: derive equations for radial and tangential components, which is sufficient to describe

motion since it is a 4D phase space.
()
sin vy
(106)
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3. MODELLING GALAXIES

SO

Cod
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and, since we are using a central force,

dz R
= F(r)é,

(108)

(109)

where F' is the force per unit mass. Combining the two above equations, we get the scalar

equations for 4D orbits for the radial and tangential components of motion:

radial : 7 — 7Y% = F(r)
tangential : 2 4+ 1 =0 .

(110)

For now, we focus on the radial equation and substitute u = % to avoid the singularity at

r = (. Then

With

Then

-4 (5)

dt

a_Ld _;.d

dt  r2dy dy
L =7x if’
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Then we get
d d1 1 dv
Fu) = Lu*— | Lu*—= ) — = [ Lu®*—=
(“) “dw< “dwu) u( “dw>
d —1du 1 2
= I 2 - 2 ="y - L 2
“dw< B u2d¢> o ()
d?u
2,2 2,3
which gives us the orbit equation:
d?u F(u)
dy? L?u?

with u = u(¢)). Note that there is no time dependence.
We now examine some examples using this equation.

Examples:

o Kepler:

G 9
¢(T)_———> F(T)_——¢_— Tz __GMU
SO we get the orbital equation:

d?u Fu) GM

d—WJru:—Lqu— 12

Note that this is a harmonic oscillator, so we know the solution:

GM
LQ

u(®y) = C cos(¢ — ¢o) +

(115)

(116)

(117)

(118)

(119)

Then for ¢» =0 to ¢ = 27, u(v» = 0) = u(yp = 27) and we get closed orbits (frequency

w=1).

e Post-Newtonian relativistic correction:

GM 2G M
=27 (1
o(r) r ( * rc? )
SO q
F(r) = — —
) =6
GM  AG?*M?
T R J)
29 72
:—GMu2—4G2M u? .
c
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So we get the orbital equation:

d?u Fu) GM 4AG*M?*
— + U= — = u
dy? L2u? L2 L2c2
:>d2_u . AGP M? _ GM ‘ (122)
dy? L2c? L?
constant

The term in parentheses implies that k? # 1, so w < 1, which means that u(¢ = 0) #
u(v = 2m). This accounts for the precession of Mercury.

The solution for a harmonic oscillator

mi + ki = const

1s
u = cos(wt — ¢)

(123)

(124)

where w? = k/m. Then if w # 1 and k # 1, u(0) # u(27). Here, ¢ is analogous to 1,
so if the position u after one orbit when 1 = 27 is not the same as when 1 = 0, the
mass has not returned to its previous position and the orbit is not closed.

This content is excluded from our Creative
Commons license. For more information, see
https://ocw.mit.edu/help/faq-fair-use/

Axisymmetric Potentials: ¢ = ¢(R, |z|)
We will derive equations for R, z, and .

Cr= (st 22.)
—r = —(ré, + zé,
dt dt
. d
:¢ér+rwéw+2éz+z&(éz)
= 0 since €,

= &, 4 Tpéy + 2E, .
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Note that

then

R
ds2 = dt 7’€r rYey, Z€Z

= i, + Py + ey T (¢é¢) +ze,

= 8, + Py + Iy + Ty — 1%, + Zé,

= (7= rd?) & + (200 4 1) 4 + 22
—_—

_1d
T ordt ( ¢>
and for an axisymmetric potential
d? -
—r=F= 8¢, 0, %
dt? or 0z
so we get each component of the force:
radial : 7 — r)® = —%
or
1d -
tangential : —— <r2w> =0
T
d
:>_
dt (T ¢>
(using conservation of L, = r*)) = constant)
vertical : Z = —%
0z

We then rewrite this in terms of the effective potential:
2

¢eff
where the last term is the centrifugal barrier. Since
— d —
U= —r
dt

then, using the above from ?,

E= (7" —|—7"2w2~|—z>—|—¢

wl»—t[\ﬂ»—t

(7* + 2%) + den
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SO

7'“':7"&2:%

. 0 L?
_ 2 _ —7
= or <¢eﬁ 2r2)

h a¢eﬁ L2
2 _ L 133
ry o r3. (133)
. a¢eﬁ o T4¢2

or r3

= r1)? (using L. = ri))

_ a(beff
or

and
. 8¢eff
0z

So finally we get the scalar equations for 4D orbits (£, L,):
o 8gbeﬁC
or

. 8¢eﬂ
- _ 135
3 5 (135)

(7% + 2%) + ¢ -

Z =

(134)

r =

E =

DN | —

Note that the orbits have a uniform rotation around the symmetry axis (z) with Y = %,
but we have oscillations in r and z. If r is not oscillating, then z = 0, and any perturbation
leads to oscillations in z and r.

Guiding center and circular orbits:

det has a minimum at some R, such that for a given L., ¢(R,,0) is minimal:
At the minimum:

A
Oest _0 efi(r,0)
87’ r=Rg,2=0 ( 36)
. 1
8gbeﬂr .
=0
0z r=Rg,2=0 Rg
where symmetry implies that there is no force \\‘/ r
at 2 = 0.
Then we get:
0= a¢eff
o lago (137)
0. L? .
(b i _ =z ngg
or |po R
since 96 96 L2
eff z
o " or (138)
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We also have

. L2
QQ — ¢2 —z
Ry

And since

a¢eﬁ 8¢eff _ O
or Ry.0 0z Ry0
then
F=2=0

(139)

(140)

(141)

so we have a circular orbit with speed €2 = w The minimum of ¢ occurs at a radius Ry
at which a circular orbit has angular momentum L, and E = ¢.g. This orbit is called the
guiding center. If an object is pushed off the guiding center, there is a restoring force that

leads to oscillations, or epicycles.

Epicycle approximation:

In disk galaxies, many stars are on mostly circular orbits, but they are not exactly circular.

We look for small perturbations around the circular orbit.
We will define our coordinate system (z,y) as

=r—R,

y==z

and expand ¢eg around (z,y) = (0,0).
Keeping only second-order terms for the epicycle approximation, we get

7 7 1 1 -
¢eff($a ?J) = qbeff(()a O) (¢eﬂ" x)x+ (¢eff y)y+ (¢eff xy)xy+ (¢eff xz) 2 §(¢eff,yy)92 +...
where ~
7 a(beff
eff x = 0
ou, Iz o
7 a¢eﬁ
¢e - O
o 6’y 0,0
- o o
et oy = Gm;%gfj =0 (by symmetry).
0,0
We define « and v: -
HZ = Qzeff:v:c = gbeffrr - Z e
or? Ry0
; O egy
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1 1 ~
¢ﬁ~—nx+2ﬂf+ﬂﬂam
1

= = (k) +
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We can write down the equations of motion for

~ ~ 1 1
Gur(,9) = Gen(0,0) + 5% + Sy (147)
SO B ~
- _aqbeff _ _@a¢eﬂ _ _a¢eﬁ _ —KZQQJ
or or Oz Ox (148)
5 _a(beff _ _@a¢eff _ _a(beff _ —V2
0z 0z Oy oy 4
and we get the final equations of motion:
¥ =—r’z
=12y (149)

This is harmonic oscillation with epicycle frequency x and vertical frequency v in addition
to the circular frequency

L, v, 10¢
Qr)=—=—=1/——— 150
(r) r2 r r Or (150)
where for the last equality we used the fact that the centripetal force is equal to the gravi-

. 2 . .
tational force ”7 = % on a circular orbit.
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At r = R, and Q(R,), we can rewrite x in terms of (2

dO?
<r— + 492)
dr R,
d (10¢ L?
o (o) +1%) .

B 10¢ 1% L2
= ( (_EE *zw) *474)

Ryq

(151)

2
= k2= (r—d(dQ ) + 492) .

r

Motion in the epicycle approximation (valid for z,y, 2 < R,):
We look at each component of the motion:
radial : 7(¢) = rocos (kt + a) + R,
vertical : z(t) = zy cos (vt + f3)

. L L z\ 2 r\ 2
t tial 1) = —= = —= (14 — =QR,)([1+ =
angential : v 2R < + Rg> (R,) ( + Rg)

(152)

where we use r = z + R, in the tangential equation. Assuming that x < R, and defining
Q, = Q(R,), we can approximate the tangential component to be:

. 2x
Y~ Q, (1 — E) . (153)
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We then integrate over time, so

To

_ QQQ
Q/’(t) - Qgf‘i’@bo - KR

sin(kt + ) . (154)

g

This gives us circular motion of the guiding
center with a closed retrograde elliptical or-
bit in the frame of the guiding center. We
also have oscillations in the z direction with

frequency v. .

Oort constants: (see Problem Set 3)
Goal: measure the epicycle frequency k at the position of the sun in the Milky Way by
measuring the motion of nearby stars (proper motion an the sky and line of sight velocity).

We use the galactic coordinate system to measure the location of stars in the sky (I, b):

[: galactic longitude

® b: galactic latitude

R galactic
center

J\.-...-..

R is the distance from the sun to the galactic center (~ 8kpc) and d is the distance from the
sun to the star. [ measures the angle in the plane of the Milky Way away from the line of
sight to the galactic center, and b measures the angle above the plane of the galaxy. Within
this system, we find:

proper motion : u ~ d(Acos(2l) + B)

155
line of sight motion : v ~ dAsin(2[) (155)
where A and B are the Oort constants given by:
_ 1dQ
2R (156)
B = Q+ 1RdQ
B 2 dR)
More importantly, they can be related to k:
k* = —4B(A - B)|. (157)
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Luminosity-velocity relations:
We can relate properties of a galaxy to observables through several equations:

0= i (apparent size)

L
F = yw (158)
=
Introducing surface brightness ¥
v _ F L &
T2 Al R?
T 24 (159)
T i G2M?
then
!
(160)

L= )
YArG?(M/L)?
If we assume, for a given class of galaxies, that the surface brightness and the mass-to-light
ratio are the same, then

L ocvt]. (161)

This introduces two important relations.

The Tully-Fischer relation is used for spiral galaxies and relates the maximum velocity in
the rotation curve vy,.y, which can be measured from HII spectra, and the luminosity:

Locuvl . (162)

max

The Faber-Jackson relation is used for ellipticals and relates the velocity dispersion o, to the
luminosity:
Lol (163)

Thus, we can get an estimate of the intrinsic luminosity of a galaxy be measuring stel-
lar velocities. The constant of proportionality is roughly L./(220 km/s)?, where L, is the
characteristic galaxy luminosity.

3.C Phase-space distribution function

We have described the individual orbits in a potential, but this is not sufficient to describe
galactic dynamics. We want information of the configuration of all particles. Each star is
described by its position Z and velocity ¢, and we need to know this for all stars, i.e. how

—

stars are distributed in the 6D phase space (&, V)

We define a phase-space distribution function
(@ v, t)d* & d*v (164)
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