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(stagnation). The primordial power spectrum is therefore modified by the transfer function:
Py(k) = (AK)T?(k),

1

1,E>>LO (422)

T(K) ~ 171
<
ERA

where L is the comoving horizon at zequaity-

2.E Nonlinear evolution: spherical collapse

For § < 1, we can use linear perturbation theory, but for § ~ 1, nonlinear evolution begins
and halos form. This requires simulations.

Halos:

e A distribution of dark matter as a collection of nearly spherical overdense clouds to
form halos.

e We study the dynamics of spherical, homogeneous overdensities for a basic understand-
ing. This is the spherical collapse model.

Spherical collapse model:

We consider an overdense sphere in an Einstein-de Sitter cosmology. The overdensity will
eventually reach a maximum radius and then collapse to a virialized halo because the gravity
within the overdensity is stronger.

‘a\ ¥ /, H = Hya™%/? Friedmann equation for Einsten-de Sitter
R a . . .
1w T = a—ta Gt 18 the scale factor at maximum expansion (423)
R
‘/ \ Yy = D radius in units of maximum radius
ta

We can simplify:

T = Hy,t (with Hy, = Hoat_g/?)

:>x'—d$— 1 a—Hx—x_1/2
- dT - Hta Qg a Hta - (424)
H HoafS/Q a73/2 )
(using = = = 7%/ for the final equality)
Hta Ho t—a3/2 t—a3/2
So
2 =72 (425)
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2. STRUCTURE FORMATION

We use the Newtonian equation of motion for the radius R:

M 4
_G = - _ﬂ-ptaRS G

B ¢
3 TR (426)

enclosed mass stays the same

We can rewrite this:
B 3H§aL

- 8n@
where ¢ is the overdensity parameter, which is the overdensity of the halo with respect to
the background at turnaround (£ > 1 for overdensities). Then using 7 and y, we have:

Dia £ (427)

£
"= = 428
Y 27 (428)
with the boundary conditions
/
=1 =10
Yle=s (429)
Yle=0 =0
and we can solve the equations:
= x—1/2
v 3 (430)
2y?
Then we get an implicit solution for x:
P=x=|r= §x3/2 (431)
So 5
o= (5)7
2/3 (432)
de 2 (3N Ly e
dt  3\2
We also have
1
y =V - -1 (433)
)

using the first boundary condition. We also use the 4+ before turnaround and the — after.
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2. STRUCTURE FORMATION

dy/ d (/1 1/2

ey — | [= -1

ar ﬂydy((y )
1

Then

- i\/gyé (y - )1/2 (=4
e (5 00

R e)

N

-~

=1
Integrating before turnaround and using the second boundary condition gives us an implicit
solution for y:

T = % (% arcsin(2y — 1) — \/y — 2 + %) : (435)
At turnaround: 5
r=1=y 1= 3
B (Y ) P (436)
3 E i JE2

3r\°
== —
(%)
so we get the overdensity parameter €.

At collapse:
We assume symmetry, so we get collapse at 7 = ‘51. Then

3\ 2/3 , 3\ 23 74\ 23
I B _ (2 = — 41/3 4
w=(z) -G () <37>

Collapse parameters:

e Linearly extrapolated values:
at early times, y < 1, so

8 3/2 3y
N — 1+—=). 438
T orY ( 10 (438)
The overdensity inside the halo relative to the background is:
A= (f) £. (439)
Y
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2. STRUCTURE FORMATION

Note here that ¢ is the overdensity at turnaround, and we want to find A at collapse.
The background density is proportional to 73, and the halo density is proportional to
y~3. We also know that x = y = 1 at turnaround, where A = £. Now

2 2 8 3
== (—) ¥ — P <1+—y>

3 3 or 10
3/2
. 38 3y
d L
= (y) 297 ( + 10)
3 2 2
x 4 3y (440)
il I 1427
- (y) (37T> ( - 10)
e e e

linear density contrast (assuming y < 1):

5:A—1:3€y (441)

— The linearly extrapolated density contrast at turnaround is:
Atg, 5 _ 3y

5ta:_5:_

= 442
a T 5% ( )

since linear perturbations ¢ grow like the scale factor. Now

1 —2/3 2/3 1
)T
Y

using the lowest order in y. We can then insert this into d;, and get:

3 (3r\**
O = = | — ~ 1.06 444
=3 (%) (449
— The linearly extrapolated density contrast at collapse is:
a 3 (3r\*?
0o = —0in = 2000 =430 = = | =) = 1.69 445
(07 i el 5 2 ( )

So the halo can be considered collapsed when its density contrast expected from lineary
theory has reached 6. If we draw a density field as a function of one-dimensional space,
we can identify which overdensities will collapse at a given time:

collapsing overdensities

6(x)4
dc
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2. STRUCTURE FORMATION

e Nonlinear values:
We now look at the potential energy of a halo:

at turnaround: E = Vi, (no kinetic energy)
1

at collapse: E =T, + V., = 5VC (virial theorem: 27, + V. = 0) (446)

1
iVlra:E’:5‘/;:$‘/c:2vvta

Since potential energy is proportional to % and y = 1 at turnaround, we know that
y= % at virialization. Then we get the overdensity at this time:

3 1/3\ 3 2
Ay = (x—) €= <¥) € =326 = 32 (31) — 1872 ~ 178 (447)
Y 3 4
A halo in virial equilibrium is expected to have a mean density of ~ 178 higher than
the background. This is why masses and radii of halos are often quoted as Mg, which
is the mass enclosed in a sphere of radius Ryyg with an average density 200 times the
mean or critical density of the Universe.

2.F Press-Schechter mass function

We want to know the halo mass function, i.e. the number density of a given mass of halos
at a given redshift.

Analytic derivation:
We consider a halo of mass M. The characteristic length scale is then R(M) = R:

4
%Pf}pc(z)ﬁm(z) =M

M 1/3 (448)
M= (— "
R0 = (5 )
Halos of mass M are then forming if the smoothed density field § crosses 6, = 1.69:
5(@) = [ ¢ ys(@Wa(lz - 7) (149)
where Wx is the window function.
The variance on the scale R(M) is:
1 [ A
0% = — E*dkP(k)Wg(k) . (450)
2m Jo

Inflation produces a Gaussian random field, so the probability of finding a smoothed density
contrast §(Z) at a given point in space & is:

P(3(#),2) = e o (451)
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where o(2) is the linearly evolved o : o0r(z) = ogrD(z) for growth factor D.

The Press-Schechter idea is that the probability of finding the filtered density contrast at
or above the linear density contrast for spherical collapse, § > J., is equal to the fraction of
volume filled with halos of mass M:

F(M, 2) = /: dsp(5, 2) = 1erfc ( ij< )) (452)

M To calculate this, we need:

The distribution of halos over mass M is simply

0 dop(z) O  dog O
oM dM  Odop(z)  dM dop

(453)

Using Lerfe(z) = —\/%?e*’“g

OF(M,z) dog 0O <lerfc( de ))
OM  dM dog \2 V2D(2)og

dO'R 1 ( 50 ) 2 *#gg(z)
= — — ——¢€ R
12\ Van(er) \ VA

_ dop Oc —ﬁé(z)
dM 2ro},D(z)

1§ dln(op)

- V2rogD(z) dM

, we get:

(454)

__ ez
e 2%132(2)

SO

OF (M, z)

BT dM = fraction of volume filled with halos of mass [M, M + dM]. (455)

We must convert g—ﬂ to an actual halo mass function. We convert to comoving number
density by dividing by the mean volume M /p.(2)2(z) occupied by mass M halos:

2

OF (M, z) 1 pe(2)(2)0.dIn(or) 5% 1
_ e 20RDP%(=) (456)
oM V2r  orD(2) dM M

However, we need a fudge factor for the mass function to work. We require

OF (M, z)
dM ————"—= =1 457
[ (457)
since g—]@ is a volume fraction. But we get 3 1 using 8F(MZ above! We therefore add a factor
of two:
2 pe(2)Qr(2)0. dIn(og) ——ntir— 1
N(M,z)=1/— 20pP7) — | 458
(M, 2) \/; orD(z) dM M (458)
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2. STRUCTURE FORMATION

See Problem Set 6 for a description of the Extended Press-Schechter formalism that explains
the fudge factor.

100 B | I I -

-  Press-Schechter

- Sheth-Mo-Tormen

1L Jenkins i

10 = Tinker
[ Here we show the mass
1072 F - function for several theoret-

ical models from Press and
] Schechter 1973, Sheth, Mo,
3 and Tormen 2002, Jenk-
] ins et al. 2002, and Tin-
ker et al. 2008. The

zlz 107 —

10~ 3

3 lines are fairly similar, al-
i though the Press-Schechter
s deviates slightly more from
10 3 E the other models.
107 3 -
3 ! 1 1
10" 101 10
Mass [Mg]
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