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(stagnation). The primordial power spectrum is therefore modified by the transfer function:

P0(k) = (Ak)T 2(k),

T (K) ≈


1,

1

k
� L0

1

k2
,

1

k
� L0

(422)

where L0 is the comoving horizon at zequality.

2.E Nonlinear evolution: spherical collapse

For δ � 1, we can use linear perturbation theory, but for δ ∼ 1, nonlinear evolution begins
and halos form. This requires simulations.

Halos:

• A distribution of dark matter as a collection of nearly spherical overdense clouds to
form halos.

• We study the dynamics of spherical, homogeneous overdensities for a basic understand-
ing. This is the spherical collapse model.

Spherical collapse model:
We consider an overdense sphere in an Einstein-de Sitter cosmology. The overdensity will
eventually reach a maximum radius and then collapse to a virialized halo because the gravity
within the overdensity is stronger.

P0(k)

k0=1/L0 k

a
R

H = H0a
−3/2 Friedmann equation for Einsten-de Sitter

x =
a

ata

ata is the scale factor at maximum expansion

y =
R

Rta

radius in units of maximum radius

(423)

We can simplify:

τ = Htat (with Hta = H0a
−3/2
ta )

⇒ x′ =
dx

dτ
=

1

Hta

ȧ

ata

=
H

Hta

x = x−1/2

(using
H

Hta

=
H0a

−3/2

H0a
−3/2
ta

=
a−3/2

a
−3/2
ta

= x−3/2 for the final equality)

(424)

So
x′ = x−1/2 (425)
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We use the Newtonian equation of motion for the radius R:

R̈ = −GM
R2

= − 4π

3
ρtaR

3
ta︸ ︷︷ ︸ GR2

enclosed mass stays the same
(426)

We can rewrite this:
ρta =

3H2
ta

8πG
ξ (427)

where ξ is the overdensity parameter, which is the overdensity of the halo with respect to
the background at turnaround (ξ > 1 for overdensities). Then using τ and y, we have:

y′′ = − ξ

2y2
(428)

with the boundary conditions
y′|x=1 = 0

y|x=0 = 0
(429)

and we can solve the equations:
x′ = x−1/2

y′′ = − 3

2y2

(430)

Then we get an implicit solution for x:

x′ = x−1/2 ⇒ τ =
2

3
x3/2 (431)

So
x =

(
3

2

)
τ 2/3

dx

dt
=

2

3

(
3

2

)2/3

τ−1/3 = x−1/2

(432)

We also have

y′ = ±
√
ξ

√
1

y
− 1 (433)

using the first boundary condition. We also use the + before turnaround and the − after.
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Then
dy′

dτ
= ±

√
ξy′

d

dy

((
1

y
− 1

)1/2
)

= ±
√
ξy′

1

2

(
1

y
− 1

)−1/2

(−y−2)

= − ξ

2y2

(
± 1√

ξ
y′
(

1

y
− 1

)−1/2
)

= − ξ

2y2

(
y′
(
±
√
ξ

√
1

y
− 1

))−1

︸ ︷︷ ︸
=1

(434)

Integrating before turnaround and using the second boundary condition gives us an implicit
solution for y:

τ =
1√
ξ

(
1

2
arcsin(2y − 1)−

√
y − y2 +

π

4

)
. (435)

At turnaround:
x = 1 = y, τ =

2

3

⇒ 2

3
=

1√
ξ

1

2
arcsin(1)︸ ︷︷ ︸

π/2

+
π

4

 =
1√
ξ

π

2

⇒ ξ =

(
3π

4

)2

(436)

so we get the overdensity parameter ξ.

At collapse:
We assume symmetry, so we get collapse at τ = 4

3
. Then

xc =

(
3

2

)2/3

τ 2/3 =

(
3

2

)2/3(
4

3

)2/3

= 41/3 (437)

Collapse parameters:

• Linearly extrapolated values:
at early times, y � 1, so

τ ≈ 8

9π
y3/2

(
1 +

3y

10

)
. (438)

The overdensity inside the halo relative to the background is:

∆ =

(
x

y

)
ξ. (439)
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Note here that ξ is the overdensity at turnaround, and we want to find ∆ at collapse.
The background density is proportional to x−3, and the halo density is proportional to
y−3. We also know that x = y = 1 at turnaround, where ∆ = ξ. Now

τ =
2

3
x3/2 ⇒

(
2

3

)
x3/2 ≈ 8

9π
y3/2

(
1 +

3y

10

)
⇒
(
x

y

)3/2

=
3

2

8

9π

(
1 +

3y

10

)
⇒
(
x

y

)3

=

(
4

3π

)2

︸ ︷︷ ︸
=1/ξ

(
1 +

3y

10

)2

︸ ︷︷ ︸
≈(1+ 3y

5 )

⇒∆ =

(
x

y

)3

ξ = 1 +
3y

5

(440)

linear density contrast (assuming y � 1):

δ = ∆− 1 =
3y

5
(441)

– The linearly extrapolated density contrast at turnaround is:

δta =
ata

a
δ =

δ

x
=

3y

5x
(442)

since linear perturbations δ grow like the scale factor. Now

1

x
=

(
3τ

2

)−2/3

≈
(

3π

4

)2/3
1

y
(443)

using the lowest order in y. We can then insert this into δta and get:

δta =
3

5

(
3π

4

)2/3

≈ 1.06 (444)

– The linearly extrapolated density contrast at collapse is:

δc =
ac
ata

δta = xcδta = 41/3δra =
3

5

(
3π

2

)2/3

≈ 1.69 (445)

So the halo can be considered collapsed when its density contrast expected from lineary
theory has reached δc. If we draw a density field as a function of one-dimensional space,
we can identify which overdensities will collapse at a given time:

P0(k)

k0=1/L0 k

a
R

time
'c

x

'(x)

'c

collapsing overdensities

x

'(x)
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• Nonlinear values:
We now look at the potential energy of a halo:

at turnaround: E = Vta (no kinetic energy)

at collapse: E = Tc + Vc =
1

2
Vc (virial theorem: 2Tc + Vc = 0)

⇒Vra = E =
1

2
Vc ⇒ Vc = 2Vta

(446)

Since potential energy is proportional to 1
r
and y = 1 at turnaround, we know that

y = 1
2
at virialization. Then we get the overdensity at this time:

∆V =

(
xc
y

)3

ξ =

(
41/3

1
2

)3

ξ = 32ξ = 32

(
3π

4

)2

= 18π2 ≈ 178 (447)

A halo in virial equilibrium is expected to have a mean density of ∼ 178 higher than
the background. This is why masses and radii of halos are often quoted as M200, which
is the mass enclosed in a sphere of radius R200 with an average density 200 times the
mean or critical density of the Universe.

2.F Press-Schechter mass function

We want to know the halo mass function, i.e. the number density of a given mass of halos
at a given redshift.

Analytic derivation:
We consider a halo of mass M . The characteristic length scale is then R(M) = R:

4π

3
R3ρc(z)Ωm(z) = M

⇒R(M) =

(
3M

4πρc(z)Ωm(z)

)1/3 (448)

Halos of mass M are then forming if the smoothed density field δ̄ crosses δc = 1.69:

δ̄(~x) =

∫
d3yδ(~x)WR(|~x− ~y|) (449)

where WR is the window function.

The variance on the scale R(M) is:

σ2
R =

1

2π

∫ ∞
0

k2dkP (k)ŴR(k) . (450)

Inflation produces a Gaussian random field, so the probability of finding a smoothed density
contrast δ̄(~x) at a given point in space ~x is:

p(δ̄(~x), z) =
1√

2πσ2
R(z)

e
− δ̄2(~x)

2σ2
R

(z) (451)
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where σR(z) is the linearly evolved σR : σR(z) = σRD(z) for growth factor D.

The Press-Schechter idea is that the probability of finding the filtered density contrast at
or above the linear density contrast for spherical collapse, δ̄ > δc, is equal to the fraction of
volume filled with halos of mass M :

F (M, z) =

∫ ∞
δc

dδ̄p(δ̄, z) =
1

2
erfc

(
δc√

2σR(z)

)
. (452)

The distribution of halos over mass M is simply ∂F (M,z)
∂M

. To calculate this, we need:

∂

∂M
− dσR(z)

dM

∂

∂σR(z)
=
dσR
dM

∂

∂σR
. (453)

Using d
dx

erfc(x) = − 2√
π
e−x

2 , we get:

∂F (M, z)

∂M
=

dσR
dM

∂

∂σR

(
1

2
erfc

(
δc√

2D(z)σR

))
=

dσR
dM

1

2

(
− δc√

2D(z)σ2
R

)(
− 2√

π
e
− δ2c

2σ2
R
D2(z)

)

=
dσR
dM

δc√
2πσ2

RD(z)
e
− δ2c

2σ2
R
D2(z)

=
1√
2π

δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

(454)

so

∂F (M, z)

∂M
dM = fraction of volume filled with halos of mass [M,M + dM ]. (455)

We must convert ∂F
∂M

to an actual halo mass function. We convert to comoving number
density by dividing by the mean volume M/ρc(z)ΩM(z) occupied by mass M halos:

∂F (M, z)

∂M
=

1√
2π

ρc(z)ΩM(z)δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

1

M
(456)

However, we need a fudge factor for the mass function to work. We require∫ 1

0

dM
∂F (M, z)

∂M
= 1 (457)

since ∂F
∂M

is a volume fraction. But we get 1
2
using ∂F (M,z)

∂M
above! We therefore add a factor

of two:

N(M, z) =

√
2

π

ρc(z)ΩM(z)δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

1

M
. (458)
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See Problem Set 6 for a description of the Extended Press-Schechter formalism that explains
the fudge factor.

Here we show the mass
function for several theoret-
ical models from Press and
Schechter 1973, Sheth, Mo,
and Tormen 2002, Jenk-
ins et al. 2002, and Tin-
ker et al. 2008. The
lines are fairly similar, al-
though the Press-Schechter
deviates slightly more from
the other models.
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