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Part I

Galaxies

3

Messier 104, Sombrero Galaxy. Credit: ESO/P. Barthel 
(Kapteyn Institute, Groningen). License CC-BY.



1. KEY OBSERVATIONS OF GALAXIES

1 Key observations of galaxies

1.A Basic units of radiative transfer

We first define some fundamental quantities.

Flux:

Fν =
dEν

dA dt dν
(1)

with units [Fν ] = erg s−1cm−2Hz−1.
Fν is the flux at a specific frequency ν.

Specific intensity:

Iν =
dEν

dA dt dν dΩ
(2)

with units [Iν ] = erg s−1cm−2Hz−1sr−1.
This is the flux per solid angle.

Note:

• Fν(r) ∝ 1
r2 .

Due to energy conservation:

Fν(r1)× 4πr2
1 =

(dEν)1 = (dEν)2 =

Fν(r2)2 × 4πr2
2

(3)

⇒ Fν(r1)

Fν(r2)
=

(
r2

r1

)2

⇒ Fν(r) ∝
1

r2

(4)

• Iν(r) ∝ constant because:

Iν =
Fν
dΩ

and dΩ ∝ 1

r2

⇒ Fν ∝
1

r2
and dΩ ∝ 1

r2

⇒ Iν ∝ constant

(5)
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1. KEY OBSERVATIONS OF GALAXIES

Magnitude scale:
Define the apparent magnitude m, i.e. how bright an object appears:

m1 −m2 = −2.5 log

(
(Fν)1

(Fν)2

)
(6)

With this definition, a brighter object has a lower magnitude. There are two main magnitude
systems: Vega and AB.

The Vega system is calibrated using the flux of the AO V star Vega (Fν)Vega, which has a
non-flat distribution (flux changes for different frequencies). The AB system is calibrated to

a hypothetical source with flux

(Fν)AB = 3.63× 10−20erg s−1cm−2Hz−1 (7)

which has a flat distribution.

We also have the monochromatic magnitude, i.e. the magnitude at a single wavelength,
defined for each system:

Vega : mν = −2.5 log

(
Fν

(Fν)Vega

)
AB : mν = −2.5 log

(
Fν

(Fν)AB

) (8)

A more practical quantity is the band
magnitude. In most observations, the
fluxes are integrated over a filter band-
pass with a transmission function TX(ν)
for band X. An example of a set of
filters (U,B,V,R,I) and the transmission
function (what percent of the flux is let
through at a given frequency or wave-
length) is shown to the right.

Vega : mX = −2.5 log

( ∫
FνTX(ν)dν∫

(Fν)VegaTX(ν)dν

)
AB : mX = −2.5 log

( ∫
FνTX(ν)dν∫

(Fν)ABTX(ν)dν

) (9)

(Fν)AB = constant and
∫
TX(ν)dν = 1, so∫

(Fν)ABTX(ν)dν = (Fν)AB . (10)
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1. KEY OBSERVATIONS OF GALAXIES

Telescopes like Hubble and SDSS observe primarily in the visible light spectrum. JWST
measures slightly longer wavelengths and is sensitive to the infrared range. The NIRCam
instrument filters are shown in below. We show the total throughput (photon-to-election
conversion efficiency) for extra-wide, wide, medium, and narrow filters for NIRCam (image
from https://jwst-docs.stsci.edu).

Each filter measures a different energy range of electromagnetic waves and therefore probes
different physics. As an example of this, we show the Orion Nebula as viewed in visible light
from Hubble below on the left and in X-ray from Chandra on the right. In the visible range,
we can see the diffuse gas while in the X-ray, we can see point-like sources from stars.

6

Figure is in the public domain. JWST User Documentation (JDox). Baltimore, MD: Space Telescope 
Science Institute; 2016-2024-07-25. https://jwst-docs.stsci.edu

https://jwst-docs.stsci.edu/jwst-near-infrared-camera/nircam-instrumentation/nircam-filters


1. KEY OBSERVATIONS OF GALAXIES

For all filters, −2.5 log(3.63× 10−20) = 48.6, so (for the AB system)

mX = −2.5 log

(∫
FνTX(ν)dν

)
− 48.6

mν = −2.5 log(Fν)− 48.6 .

(11)

The value for (Fν)AB was chosen such that mV (AB) = mV (Vega) and they have the same
magnitude in the V-band. For other bands, one must apply the conversion

mX(AB)−mX(Vega) = −2.5 log

(∫
(Fν)ABTX(ν)dν

(Fν)VegaTX(ν)dν

)
. (12)

This gives us, for example:
UAB = UVega − 0.8

BAB = BVega − 0.11

VAB = VVega

(13)

Be careful which magnitude is quoted! SDSS uses u, g, r, i, z filters.

Define the absolute magnitude as the apparent magnitude if the object were at a distance of
10 pc. Apparent magnitude depends on both the brightness of the object and its distance.
Absolute magnitude is related to the intrinsic brightness of the object.

mX −MX = 5 log

(
D

10 pc

)
≡ µ (14)
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Image of Orion Nebula created by Mark Vogelsberger using SAOImage DS9 image display and 
visualization tool for astronomical data. https://sites.google.com/cfa.harvard.edu/saoimageds9/home



1. KEY OBSERVATIONS OF GALAXIES

Since
Fapp =

L

4πD2
and Fabs =

L

4π(10 pc)2

⇒ mX = −2.5 log

(
L

4πD2

)
+ constant

MX = −2.5 log

(
L

4π(10 pc)2

)
+ constant

⇒ mX −MX = +2.5 log(D2)− 2.5 log((10 pc)2)

= 5 log(D)− 5 log(10 pc)

= 5 log(D/pc)− 5

(15)

µ = mX −MX is the distance modulus (a measure of distance).

Colors:
If observations are made in more than one filter (X, Y ), then one can define a color as the
difference in magnitudes between the two bands:

(X − Y ) = mX −mY = MX −MY (16)

Stars and galaxies can be “red" or “blue", for example. It is common to use the difference
between g and r filters to get g − r color. A higher g − r value is red and a lower value
is blue. Note that higher g − r has a higher g relative to r, but a higher magnitude is less
bright.

We can take images of the same object through different filters and combine them for a more
complete view of the object. Here we show images of the supernova remnant Cassiopeia A
taken in three wavelength ranges (0.6-1.65 keV, 1.67-2.25 keV, and 2.25-7.5 keV) shown in
red, green, and blue and then combined into a single image.

+ + −→

Surface brightness:
We measure the luminosity ([erg s−1]) per area. This is often called Σ or I. It effectively
measures the magnitude per square arcsecond:

M ∝ −2.5 log(I) . (17)

Spiral and elliptical galaxies show different surface density profiles:

exponential : I(r) = I0e
−r/rs (spirals)

de Vaucouleurs : I(r) = I0e
−7.67(r/re)

1
4 (ellipticals)

(18)

88
Images of supernova remnant created by Mark Vogelsberger using SAOImage DS9 image display and visualization tool for 
astronomical data. https://sites.google.com/cfa.harvard.edu/saoimageds9/home



1. KEY OBSERVATIONS OF GALAXIES

More generally, we have the Sérsic profile with Sérsic index n:

I(r) = I0e
−(r/r0)

1
n (19)

Observationally, n ≈ 4 for ellipticals and n ≈ 1 for spirals. Theory needs to explain this!

1.B Basic properties of the galaxy population

Types of galaxies:
Images of galaxies show mainly three types:

• Spirals (Sp):

– dominate in the field (outside clusters)

– disks with gas and stars

– young stellar population

– rotationally supported

– blue color

– exponential surface brightness profile

• Ellipticals (E):

– cluster environment

– spheroidal

– old stellar population

– pressure supported

– red color

– de Vaucouleurs surface brightness profile

• Lenticular (SO):

– stellar disk

– no gas disk

– link between spiral and elliptical galaxies

Andromeda

M87

NGC 2787
Galaxy luminosity distribution:
The luminosity L of an object is

L =
dE

dt
=

∫
IνdAdΩdν . (20)

9M87 Image: Courtesy of Canada-France-Hawaii Telescope / 
Coelum. Used with permission.

NGC 2787 Image: NASA and The Hubble Heritage Team (STScI/AURA);
Acknowledgment: M. Carollo (Swiss Federal Institute of Technology, 
Zurich)

Andromeda M31: Courtesy of Robert 
Gensler. Used with permission.

https://apod.nasa.gov/apod/ap051222.html
https://apod.nasa.gov/apod/ap040616.html
https://apod.nasa.gov/apod/ap020408.html


1. KEY OBSERVATIONS OF GALAXIES

What is the distribution function of L for galaxies? We commonly use the Schechter function
to describe the number density of galaxies at a given luminosity:

φ(L)dL = φ∗

(
L

L∗

)α
e−L/L∗

dL

L∗
(21)

φ∗: normalization
α: faint-end slope
L∗: characteristic L at the normalization point

φ∗ ≈ 0.02h3Mpc−3

α ≈ −1.09
L∗ ≈ 1010 L�h

−2

Velocity structure of galaxies:
Spectral data of galaxies allows us to measure velocities. Spiral galaxies have ordered, circular
motion with Vc ∼ 200± 50 km/s. We can measure the circular velocity through the motions
of stars and, further out, from the spectral lines of gas. Outside the galaxy, one finds that
vc remains constant, but one would expect:

mv2
c

r
=
GMm

r2
(22)

for a circular orbit. This implies vc ∝ r−1/2, for centralized mass, which is not constant. To
have vc constant, we need

vc ∝
1

r

∫ r

0

4πr2ρ(r)dr

⇒ρ(r) ∝ r−2

(23)

to large radii. This was one of the first hints for dark matter.
What is dark matter? A few things we know:

• It can’t be non-luminous gas since we would have seen it through absorption lines

• Dim stars or other dense objects at larger distances (MACHOS: Massive Compact Halo
Object) have been ruled out since microlensing (the temporary brightening of a distant
object due to a closer massive object bending the light rays closer together) does not
occur frequently enough

• Neutrinos have been ruled out since they lead to the wrong structure formation because
they move so fast (hot dark matter). Since neutrinos move close to the speed of light,
they have too much kinetic energy to be bound in low-mass potential wells.

10



1. KEY OBSERVATIONS OF GALAXIES

• It could possibly be WIMPs (Weakly Interacting Massive Particles). However, there
are no detections of WIMPs so far.

• General theories:

– Cold Dark Matter (CDM): dark matter is a particle that moves slowly (v � c)
and is collisionless, interacting solely through gravity.

– Self-interacting dark matter (SIDM): dark matter interacts through gravity as well
as through self-interactions that allow particles to scatter and transfer energy and
momentum.

– Warm dark matter (WDM): dark matter is still collisionless but moves with a
faster velocity than CDM, which makes it harder to form less massive halos.

– Bose-Einstein condensate (very low mass) dark matter: dark matter particles are
very low mass such that their de Broglie wavelength is on the length scale of
galaxies and leads to interference patterns in halos.

– Modified Newtonian dynamics (MOND): Dark matter is not a type of matter but
is accounted for through modifications to our theory of gravity.

Elliptical galaxies have a random motion velocity structure with velocity dispersion σv ∼
200− 300 km/s. There is negligible circular motion, typically vc ∼ 50− 100 km/s.

Spectra can also be used to measure redshift/recession velocity z of galaxies:

z =
λobs − λ0

λ0

or 1 + z =
λobs

λ0

(24)

For low z (z � 1), one finds that the distance d is related to the redshift through the
present-day Hubble constant H0:

d ≈ cz

H0

, (25)

which yields
v = H0d ≈ cz , z � 1 (26)

The redshift directly yields the recession velocity. A more formal proof of d ≈ cz
H0

will be
discussed later (low z limit for all distances).

Note: h is defined so the Hubble constant today is H0 = 100h km/s/Mpc

1.C Stellar population synthesis

So far, we have used spectral information only to derive velocities. However, we can also use
this information to derive the spectral energy distribution (SED) of a galaxy. Stellar SEDs
are blackbodies with different temperatures. The types of stars are referred to as O, B, A,
F, G, K, M, L, and T, each with different temperatures that contribute differently to the

11



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

spectrum of the galaxy. Galaxies are a combination of these, so the total flux at a given
frequency is a combination of the flux from each star:

Fν = NOFν,O +NBFν,B + ... (27)

Determining NO, NB, NA, NF ... is the basic idea of stellar population synthesis.

2 Structure and a qualitative picture of galaxies

Goal: look at the most basic dynamical properties of a galaxy.

A galaxy is a collisionless fluid of stars and dark matter orbiting together with collisional gas
in a common self-gravitational potential.

With this definition, we can try to understand the main dynamical properties.

2.A Virial Theorem

Derivation: assume stars orbit in a galaxy with mass, position, and velocity (mi, ~ri, ~vi). We
then define the virial G:

G =
∑
i

~pi · ~ri (28)

which we can rewrite:
G =

∑
i

(
mi
d~ri
dt

)
· ~ri . (29)

Since
d

dt
(~r · ~r) = ~̇r · ~r + ~r · ~̇r = 2~̇r ~r , (30)

we get

G =
1

2

∑
i

mi
d

dt
(~ri · ~ri)

=
1

2

d

dt

∑
i

mir
2
i .

(31)

Defining I =
∑

imir
2
i as the moment of inertia about the origin, we get

G =
1

2

dI

dt
. (32)

Now consider the time derivative of G:
dG

dt
=
∑
i

~̇pi · ~ri +
∑
i

~p · ~̇ri

=
∑
i

~Fi · ~ri +
∑
i

miv
2
i

=
∑
i

~Fi · ~ri + 2T

(33)

12



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

where T is the kinetic energy. Because gravity is a pairwise force, we can write

~Fk =
N∑
i=1

~Fjk . (34)

Fii = 0 and 1 ≤ j ≤ N , so we can split Fjk into two parts, the upper and lower portions of
the matrix

k ↓ j →

Fjk =

 0 2
. . .

1 0

 (35)

with

1 =
N∑
k=2

k−1∑
j=1

~Fjk · ~rk and 2 =
N−1∑
k=1

N∑
j=k+1

~Fjk · ~rk (36)

so
N∑
k=1

~Fk · ~rk =
N∑
k=2

k−1∑
j=1

~Fjk · ~rk +
N−1∑
k=1

N∑
j=k+1

~Fjk · ~rk . (37)

F is pairwise, so −~Fkj = ~Fjk, which gives

N∑
k=1

~Fk · ~rk =
N∑
k=2

k−1∑
j=1

~Fjk · ~rk −
N−1∑
k=1

N∑
j=k+1

~Fkj · ~rk . (38)

The second term in the above equation can be rewritten:

N−1∑
k=1

N∑
j=k+1

~Fkj · ~rk =
N−1∑
j=1

N∑
k=j+1

~Fjk · ~rj =
N∑
k=2

k−1∑
j=1

~Fjk · ~rj (39)

which has the same matrix elements as the first term, so we get

N∑
k=1

~Fk · ~rk =
N∑
k=2

k−1∑
j=1

~Fjk · (~rk − ~rj) . (40)

We now assume that there is a potential V such that:

~Fjk = −∇kV (|~rjk|) = −∇kV (rjk)

= −dV

dr

(
~rk − ~rj
rjk

) (41)
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

so we get
N∑
k=1

~Fk · ~rk =
N∑
k=2

k−1∑
j=1

~Fjk · (~rk − ~rj)

= −
N∑
k=2

k−1∑
j=1

dV

dr

|~rk − ~rj|2

rjk

= −
N∑
k=2

k−1∑
j=1

dV

dr
rjk .

(42)

We now assume the special case V (rjk) = αrnjk. This gives us

dV

dr
= nαrn−1

jk

⇒dV

dr
rjk = nV

(43)

so
N∑
k=1

~Fk · ~rk = −
N∑
k=2

k−1∑
j=1

nV (rjk)

= −n
N∑
k−2

k−1∑
j=1

V (rjk)

= −nVtot .

(44)

Finally:
dG

dt
=
∑
i

~Ii · ~ri + 2T = 2T − nVtot (45)

With dG
dt

= 1
2

d2I
dt2
, U = Vtot, and n = −1 (for gravity):

1

2

d2I

dt2
= 2T + U . (46)

We now take the time average:〈
dG

dt

〉
T

=
1

T

∫ T
0

dG

dt
dt =

G(T )−G(0)

T

⇒
〈

dG

dt

〉
T

= 2〈T 〉T − n〈Vtot〉T
(47)

For a steady state system and long time average, G(T )−G(0)
T ≈ 0, so we get

0 = 2〈T 〉T − n〈Vtot〉T
0 = 2〈T 〉T + 〈U〉T for n = −1

. (48)

This is the virial theorem, often written simply as 0 = 2T + U .

Note the three important assumptions for the virial theorem to hold:

14



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

• F is a pairwise force

• The potential V has the form V ∝ rn

• We have a steady state time averaged quantity d2I
dt2

= 0.

Applications:
We now apply the virial theorem to a galaxy.

2T + U = 0 . (49)

Assuming that a galaxy is made ofN stars all with the same massm (so total massM = Nm)
and average velocity ~v, we get a total kinetic energy for the system

T =
1

2

∑
i

miv
2
i ≈

1

2
Mv̄2 =

1

2
Mv2 . (50)

From dimensional analysis for a galaxy of size R, we get a total potential energy

U = −GM
2

R
. (51)

The virial theorem then implies

Mv2 +

(
−GM

2

R

)
= 0

⇒v =

√
GM

R
.

(52)

Using some typical numbers:
R ≈ 10kpc M� = 2× 1033g
M ≈ 1011M� G = 0.0043M−1

� pc
(

km
s

)2

v =

√
0.0043M−1

� pc(km/s)2 1011M�
10 000pc

≈
√

4× 104 km/s ≈ 200 km/s

(53)

which is in good agreement with observations.

We can also use the virial to get the ideal gas law.
For an ideal gas with N particles at temperature T is

K =
3

2
NkT (54)

where we use K for kinetic energy to differentiate from temperature and k is the Boltzmann
constant. The force comes from the pressure from the particles, so the force per unit area is

d~F = −Pd ~A . (55)

15



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

Then the potential energy is

− 1

2

〈∑
i

~Fi · ~r

〉
=
P

2

∫
~ri · d ~A (56)

and n = 2. From the divergence theorem∫
~ri · d ~A =

∫
~∇ · ~rdV

= 3

∫
dV = 3V .

(57)

The virial theorem gives
0 = 2 〈K〉T − 2 〈Vtot〉

= 2
3

2
NkT − 2

P

2
3V

(58)

so
NkT = PV . (59)

2.B Relaxation times

The virial theorem gave us some first insight into the dynamics of galaxies. Now we will
show that stars are collisionless, i.e. that two-body collisions are rare in galaxies. Since this
is true, we can describe the distribution of stars as a smooth density field and gravitational
potential.

Frequency of strong encounters between stars:
Goal: estimate the change in velocity δ~v by which the encounter deflects the velocity ~v of
the subject star.

L*
log(L)

log(ɸ)

!

F⊥

x vSubject 
star m

r "
Field 
star m

b

We assume that |δ~v|/|~v| � 1 and that the field star is stationary. This means that δ~v is
perpendicular to ~v since the accelerations parallel to ~v cancel out as the subject star passes
by the field star. We calculate δv = |δ~v| by integrating F⊥:

F⊥ =
Gm2

b2 + x2
cos θ =

Gm2b

(b2 + x2)3/2
=
Gm2

b2

[
1 +

(
vt

b

)2
]−3/2

. (60)

16



2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

Newton’s law m~̇v = ~F gives us the change in the perpendicular velocity

δv =
1

m

∫ +∞

−∞
dtF⊥

=
Gm

b2

∫ +∞

−∞

dt[
1 +

(
vt
b

)2
]3/2

=
Gm

bv

∫ +∞

−∞

ds

(1 + s2)3/2

=
2Gm

bv

(61)

using s = vt
b
. Thus, δv is roughly equal to the acceleration at closest approach, GM

b2
, times

the duration of the acceleration, 2b
v
.

Strong encounters:
An encounter is strong if δv ∼ v (which also causes the calculation to break down). This is
also when a star will have its path deflected by ∼ 90◦ ≡ bstrong.

δv ∼ v ⇔ b . b90 =
GM

v2
≡ bstrong . (62)

The cross section for strong encounters is

σstrong = πb2
strong (63)

From the virial theorem, we have

v2 ∼ GM

R
=
GNm

R

⇒bstrong ≈
2R

N∗

(64)

so we get:

σstrong ≈
4π

N2
∗
R2 (65)

which is small since N ∼ 1011. This means that the probability p of a strong encounter over
a single crossing of a star through a galaxy with an average number density of stars n is

p = nσstrongR

=
N

4
3
πR3

4πR2

N2
R

=
3

N
∼ 10−11 .

(66)

This is a tiny probability! So there are likely no strong encounters in a galaxy. For globular
clusters, N ∼ 104, so strong encounters are more common.
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

What about weak encounters?
We have seen that strong encounters are rare, i.e. they practically never happen. Neverthe-
less, if a star crosses a galaxy many times, it will encounter many weak encounters. Each of
those will slightly perturb its velocity until v⊥ ≈ v. The time it takes for this to happen is
the relaxation time of the system.

Multiple weak encounters

L*
log(L)

log(ɸ)

!

F⊥

x vSubject 
star m

r "
Field 
star m

b

A star makes a random walk through a galaxy. Its total deviation from its path is the sum
of each of its encounters with other stars. For N encounters,

δv2
tot =

N∑
i=1

(δvi)
2 . (67)

The strength of each encounter depends on the impact parameter b. The number of encoun-
ters N within (b, b+ db) is

N = (2πbdb)︸ ︷︷ ︸ (v∆t)︸ ︷︷ ︸ n︸︷︷︸
area length density .

(68)

L*
log(L)

log(ɸ)

!
F⊥

x vSubject 
star m

r "
Field 
star m

b

b

vΔt

b+db

We then have∑
i

(δvi)
2 =

∫ bmax

bmin

(number of encounters in (b, b+ db))× (δv for each encounter with b)

=

∫ bmax

bmin

(2π v ∆t n b db)

(
2Gm

bv

)2

=
8πG2m2n

v
∆t

∫ bmax

bmin

db

b
.

(69)
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

Now we determine the limits on the integral:

bmax ≈ R ≈ 10 kpc

bmin ≈ bstrong =
2R

v∗
= 10−10kpc (0.01AU)

(70)

so ∫ bmax

bmin

db

b
= ln

(
bmax

bmin

)
≡ ln Λ (Coulomb logarithm)

= ln

(
10 kpc

10−10 kpc

)
= ln

(
1011

)
≈ 25 .

(71)

Relaxation time:
We define the relaxation time trelax through∑

i

(δvi)
2 ≈ v2 ⇒ 8πG2m2n

v
ln Λtrelax

⇒trelax =
v3

8πG2m2n ln Λ
.

(72)

We now compare this to the dynamical time torbit ≈ R/v of the system:

trelax

torbit

=trelax
v

R
=

v4

8πG2m2n ln ΛR
, . (73)

Using the virial theorem v2 = GM
R

and number density n = M/m
4π
3
R3 gives us:

=
(GM/R)2

8πG2m2 M/m
4π
3
R3R ln Λ

=
M

8πm 3
4π

ln Λ

=
N

6 ln Λ
=

N∗

6 ln
(
bmax

bmin

) =
N∗

6 ln
(

R
2R/N∗

)
∼ N∗

6 lnN∗

(74)

which is very large! Thus, stars are orbiting in an unperturbed collective potential (colli-
sionless)!

2.C Collisionless relaxation

Relaxation occurs in two ways within a galaxy: the collisional gas with interactions reaches
a Maxwellian distribution through two-body interactions, but the collisionless systems (stars
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2. STRUCTURE AND A QUALITATIVE PICTURE OF GALAXIES

and dark matter) must relax through a different process otherwise galaxies and galaxy clus-
ters would not reach a relaxed state within the age of the Universe. We say a system is
relaxed when its coarse grained phase-space distribution function does not change any more.

Collisionless relaxation processes:
Phase mixing:
The coarse grained phase-space distribution function is distributed over time so doesn’t
change with time.

 

log(L)

log(ɸ)

! F⊥

x vSubject 
star m

r "
Field 
star m

b

x

v

Changing 
distribution function 
t=0

x

v

Constant 
distribution function 
t>0

no relaxation

particle loses 
energy

particle gains 
energy

Violent relaxation:
Since energy in the stellar and dark matter systems in galaxies can’t be efficiently exchanged
through collisions, we must find another way for energy exchange. The energy of an individ-
ual star (specific energy) is:

E =
1

2
v2 + φ . (75)

Then the change in energy over time is

dE

dt
=
∂E

∂~v

d~v

dt
+
∂E

∂φ

dφ

dt

= −~v · ~∇φ+
dφ

dt

= −~v · ~∇φ+
∂φ

∂t
+
∂φ

∂~x

d~x

dt

= −~v · ~∇φ+
∂φ

∂t
+ ~v~∇φ

=
∂φ

∂t

(76)

Thus, the only way for a star to change its energy is by having a time-dependent potential.

To think of this intuitively, we can consider an object moving through a potential well. If
the potential is constant with time, the particle will recover the same energy as it comes out
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3. MODELLING GALAXIES

the other side and there is no relaxation. If the potential grows with time, the particle will
need to expend more energy to cross it and will not have enough energy to get back out of
the potential well, thus losing energy. If the potential shrinks with time, the particle will
gain energy as it crosses the well.

log(L)

log(ɸ)

! x vSubject 
star m

Field 

b
b+db

x

v

Changing 
DF

x

v

Constant 
DF

no relaxation

particle loses 
energy

particle gains 
energy

As a galaxy or cluster forms, the gravitational potential changes significantly as mass accretes
and collapses into a halo. Averaging over all particles, the timescale for violent relaxation
tvr is

tvr =

〈(
dE
dt

)2

E2

〉−1/2

=

〈(
∂φ
∂t

)2

E2

〉−1/2

∼

〈
φ̇2

φ

〉−1/2

(77)

where in the last step we used the time-dependent virial theorem (see Lynden-Bell 1967).
This occurs on roughly the same timescale as free-fall since this is the timescale at which
the potential changes during collapse. It’s very fast, hence ‘violent’ relaxation!

3 Modelling galaxies

So far, we have looked at the basic dynamical properties of galaxies. Now we discuss the
main ingredients of modelling galaxies:

• potential-density pairs (the common potential)
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• orbits (trajectories of stars orbiting in a potential)

• phase-space distribution function (distribution of orbits, Vlasov equation)

• stability (Jeans criterion)

• composition of stars (stellar populations), star formation rate, initial mass function

• chemical evolution of galaxies

• active galaxies

3.A Potential-density pairs

Stars move in a collective potential. What are interesting potentials and the related density
functions?

Scalar potential:

− ~∇φ =
1

m
~F (78)

Note that mφ = U is the potential energy of the system and using Poisson’s equation
∇2φ = 4πGρ, we get

φ(~r) = G

∫
ρ(~r)

|~r′ − ~r|
d3~r (79)

⇒ potential φ− density ρ− pairs! (80)
Examples:
• Kepler/point mass potential:

φ = −GM
r

(81)

To find ~F , we take the gradient of φ
1

m
~F =

GM

r2
êr . (82)

• Homogeneous sphere:

ρ(~r) =
M

4
3
πR3

~F =?

(83)

We do not have φ, so we need a different way to get ~F . We can use Gauss’s theorem
for gravity for a surface Sr with radius R enclosing a volume Vr:∫

Sr

~F · d~S =

∫
Vr

(~∇ · ~F )dV

= −m
∫
V

(~∇2φ)dV

= −4πGm

∫
ρ(~r)dV

= −4πGM(< r)m

(84)
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Since we’re working with gravity, we have ~F (r) = −F (r)êr and∫
Sr

~F · d~S =

∫
Sr

F (r)(−êr)d~S = −4πr2F (r) (85)

⇒ 4πr2F (r) = rπGM(< r)m (86)

So
Outside the sphere : r > R⇒ F (r) =

GMm

r2

Inside the sphere : r < R⇒ F (r) = 4πG
ρr

3
m

(87)

From these, we can now also get φ : 1
m
~F = −~∇2φ

Outside the sphere : r > R⇒ φ(r) =
GMm

r
+ constant

Inside the sphere : r < R⇒ φ(r) = 2πG
ρr2

3
m+ constant

(88)

• Mestel disk (example of a disk potential):

log(ɸ)

! x vSubject 
star m

Field 

x

Constant 
DF

no relaxation

particle loses 
energy

particle gains 
energy

r"

φ(r, θ) = v2
c

[
ln
r

r0

+ ln
1 + | cos θ|

2

]
(89)

Is this a disk? It’s hard to see based on the potential, so we need to find ρ. Let’s look
at Poisson’s equation:

∇2φ =
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂φ

∂θ

)
+

1

r2 sin2 θ

∂2φ

∂ϕ︸ ︷︷ ︸
= 0, since no ϕ dependence

(90)

Using φ = v2
cφ0:

∇2φ =
v2
c

r2

∂

∂

(
r2 1

r

)
+

v2
c

r2 sin θ

(
cos θ

∂φ0

∂θ
+ sin θ

∂2φ0

∂θ2

)
=
v2
c

r2

[
1 +

(
cos θ

sin θ

∂φ0

∂θ
+
∂2φ0

∂θ2

)] (91)

We now calculate ∂φ0

∂θ
and ∂2φ0

∂θ2 . We assume cos θ > 0. The calculations are the same
or cos θ < 0 except for an overall sign change cos θ → − cos θ.

φ0 = ln

(
r

r0

)
+ ln

(
1 + cos θ

2

)
(92)
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Then
∂φ

∂θ
=

2

1 + cos θ

(
−sin θ

2

)
=

(
− sin θ

1 + cos θ

)
∂2φ0

∂θ2
= − cos θ

1 + cos θ
− sin2 θ

(1 + cos θ)2

(93)

So
cos θ

sin θ

∂φ0

∂θ
+
∂2φ0

∂θ2
= − 2 cos θ

1 + cos θ
− sin2 θ

(1 + cos θ)2

=
−2 cos θ − 2 cos2 θ − sin2 θ

(1 + cos θ)2

= −1 + cos2 θ + 2 cos θ

(1 + cos θ)2

= −(1 + cos θ)2

(1 + cos θ)2

= −1

(94)

For cos θ 6= 0, this gives ∇2φ = v2
c

r2 (1 − 1) = 0, so there is
no density for θ 6= π/2 and all mass is in a thin plane with
infinite density ρ (3D density).

We can calculate the surface density

Σ(r) =

∫ +∞

−∞

1

4πG
~∇2φ dz (95)

With z = r cos θ so dz = −r sin θdθ + cos θdr ≈ −r dθ since θ ≈ π/2, we get

Σ(r) =

∫
ρ dz

=

∫ π
2
−ε

π
2

+ε

1

4πG
~∇2φ(−r dθ) .

(96)

We go from π
2

+ ε where z < 0 to π
2
− ε where z > 0. We can then switch the bounds
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and change the overall sign

Σ(r) =
1

4πG

∫ π
2

+ε

π
2
−ε

~∇2φ r dθ

=
1

4πG

∫ π
2

+ε

π
2
−ε

v2
c

r2

(
1 +

[
cos θ

sin θ

∂φ0

∂θ
+
∂2φ0

∂θ2

])
r dθ

≈ 1

4πG

v2
c

r

∫ π
2

+ε

π
2
−ε

(
cos θ

sin θ

∂φ0

∂θ
+
∂2φ0

∂θ2

)
dθ

(continuous functions→ 0 for ε→ 0)

≈ 1

4πG

v2
c

r

∫ π
2

+ε

π
2
−ε

∂2φ0

∂θ2
dθ

=
1

4πG

[
∂φ0

∂θ

]π
2

+ε

π
2
−ε

(97)

When θ > π
2
, cos θ < 0 and | cos θ| = − cos θ, and when θ < π

2
, cos θ > 0 and

| cos θ| = cos θ. So we take the derivative using − cos θ in the first term and cos θ in
the second term

Σ(r) =
1

4πG

([
sin θ

1− cos θ

]
π
2

+ε

−
[
− sin θ

1 + cos θ

]
π
2
−ε

)
(ε→ 0)

=
1

4πG

v2
c

r
(1 + 1)

⇒ Σ(r) =
1

2πG

v2
c

r
.

(98)

• Navarro-Frenk-White profile (NFW):
empirical profile found in simulations of CDM
halos.

ρ(r) =
ρ0(

( r
a

) (
1 + r

a

)2 ∝

{
r−1 r � a

r−3 r � a
(99)

Simulations showed the ρ0 and a are strongly correlated for CDM halos, so halos are
approximately members of a 1-parameter family. The conventional choice for this
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parameter is r200, the distance which has an enclosed density 200 times the cosmic
critical density ρc (which we will cover later) or M200 = 200ρc

4
3
πr3

200.

The concentration of a halo is
c =

r200

a
(100)

Central result:
The second parameter c is only a very weak function of mass and for fixed mass, and
it is the same for all halos in that mass range.

φ = −4πρ0a
2 ln
(
1 + r

a

)
r
a

+ constant (101)

Related topics:

– Core-cusp problem: From observations of stellar dynamics, the inner profile of
halos flattens to a slope ∼ 0 (core) instead of −1 (cusp). This is possibly due to
supernova feedback, but it could also be resolved through modifications of cold
dark matter.

– Diversity of shapes problem: Observationally, halos display diversity in the shapes
of their profiles with some cuspier and some more cored profiles whereas, in simu-
lations, halos are universally described by the NFW profile and self-similar across
mass ranges (the profiles look the same when scaled).

– Missing satellite problem: Simulations produce more satellite halos than there are
observed satellite galaxies. It’s possible that not all subhalos form stars, so we
need to be able to find “dark subhalos." This could be done by looking for disrup-
tions in stellar streams or through gravitational lensing. Recently, however, there
have been many more satellites found as our observational techniques improve.

– Too-big-to-fail problem: This is related to the missing satellites problem, where
the number of predicted large halos doesn’t match the number of large galaxies
observed (but the total number of satellite halos is consistent). The gravitational
potential of these galaxies, however, is large enough that they should have col-
lected enough gas and stars to form galaxies and maintain their evolution (e.g.
not lose the stars through stripping).

3.B Orbits

Now that we have looked at potential-density pairs, we can study orbits in these potentials.
Orbits refer to the motion of stars through 6D phase space (~x(t), ~v(t)). Often, the integrals
of motion restrict the dimensionality of the orbit (1 per integral of motion).

Integrals of motion:
The orbital energy E is:

E =
1

2
v2 + φ(r) =

1

2
ṙ2 + φ(r) (102)
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Taking the time derivative (for a time-independent potential) gives us

dE

dt
= ṙr̈ +

dφ

dr
ṙ = ṙr̈ − r̈ṙ = 0 (103)

which implies that the energy is constant along the orbit.

The angular momentum ~L (for a central force potential) is:

~L = ~r × ~̇r (104)

and the time derivative is

d~L

dt
= ~̇r × ~̇r + ~r ×~̈r = ~r × (F (r)êr) = 0 (105)

so angular momentum is also constant along the orbit. This means we have a 4D phase
space instead of 6D for time-independent, central force potentials, which is often a good
approximation.

Central potentials: φ = φ(r)
Goal: derive equations for radial and tangential components, which is sufficient to describe
motion since it is a 4D phase space.

êr =

(
cosψ
sinψ

)
êψ =

(
sinψ
− cosψ

) (106)

We have:
d

dt
~r =

d

dt
(rêr)

= ṙêr + r
d

dt
(êr)

= ṙêr + r

(
dêr
dr︸︷︷︸ dr

dt
+

dêr
dψ

dψ

dt

)
= 0

= ṙêr + rψ̇
d

dψ
êr︸ ︷︷ ︸

=
d

dψ

(
cosψ
sinψ

)
=

(
− sinψ
cosψ

)
= êψ

= ṙêr + rψ̇êψ

(107)
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so
d2

dt2
~r =

d

dt
(ṙêr + rψ̇êψ)

= (r̈êr + ṙψ̇êψ) +
d

dt
(rψ̇êψ)

= r̈êr + ṙψ̇êψ + ṙ(ψ̇êψ) + r
d

dt

(
ψ̇êψ

)
= r̈êr + ṙψ̇êψ + ṙψ̇êψ + rψ̈êψ + rψ̇

d

dt
êψ︸ ︷︷ ︸

=
dêψ
dψ

dψ

dt

= −ψ̇êr
= r̈êr + ṙψ̇êψ + ṙψ̇êψ + rψ̈êψ − rψ̇2êr

=
(
r̈ − rψ̇2

)
êr +

(
2ṙψ̇ + rψ̈

)
êψ

(108)

and, since we are using a central force,

d2

dt2
~r = F (r)êr (109)

where F is the force per unit mass. Combining the two above equations, we get the scalar
equations for 4D orbits for the radial and tangential components of motion:

radial : r̈ − rψ̇2 = F (r)

tangential : 2ṙψ̇ + rψ̈ = 0 .
(110)

For now, we focus on the radial equation and substitute u = 1
r
to avoid the singularity at

r = 0. Then

F (r) =
d2

dt2

(
1

u

)
− 1

u

(
dψ

dt

)2

. (111)

With
~L = ~r × ~v ⇒ L = r2 dψ

dt
(112)

we can parameterize t with ψ to get u = u(ψ):

d

dt
=
L

r2

d

dψ
= Lu2 d

dψ
(113)

Then
~L = ~r × d

dt
~r

= ~r ×
(
ṙêr + rψ̇êψ

)
= rêr ×

(
ṙêr + rψ̇êψ

)
= r2ψ̇

= r2 dψ

dt
.

(114)
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Then we get

F (u) = Lu2 d

dψ

(
Lu2 d

dψ

1

u

)
− 1

u

(
Lu2 dψ

dψ

)
= Lu2 d

dψ

(
Lu2−1

u2

du

dψ

)
− 1

u

(
Lu2

)2

= −L2u2 d2u

dψ2
− L2u3

(115)

which gives us the orbit equation:

d2u

dψ2
+ u = −F (u)

L2u2
(116)

with u = u(ψ). Note that there is no time dependence.

We now examine some examples using this equation.

Examples:

• Kepler:

φ(r) = −GM
r
→ F (r) = − d

dr
φ = −GM

r2
= −GMu2 (117)

so we get the orbital equation:

d2u

dψ2
+ u = −F (u)

L2u2
=
GM

L2
. (118)

Note that this is a harmonic oscillator, so we know the solution:

u(ψ) = C cos(ψ − ψ0) +
GM

L2
(119)

Then for ψ = 0 to ψ = 2π, u(ψ = 0) = u(ψ = 2π) and we get closed orbits (frequency
ω = 1).

• Post-Newtonian relativistic correction:

φ(r) = −GM
r

(
1 +

2GM

rc2

)
(120)

so
F (r) = − d

dr
φ

= −GM
r2
− 4G2M2

r3c2

= −GMu2 − 4G2M2

c2
u3 .

(121)
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So we get the orbital equation:

d2u

dψ2
+ u = −F (u)

L2u2
=
GM

L2
+

4G2M2

L2c2
u

⇒d2u

dψ2
+

(
1− 4G2M2

L2c2︸ ︷︷ ︸
)
u =

GM

L2
.

constant

(122)

The term in parentheses implies that k2 6= 1, so ω < 1, which means that u(ψ = 0) 6=
u(ψ = 2π). This accounts for the precession of Mercury.

The solution for a harmonic oscillator

mü+ ku̇ = const (123)

is
u = cos(ωt− φ) (124)

where ω2 = k/m. Then if w 6= 1 and k 6= 1, u(0) 6= u(2π). Here, t is analogous to ψ,
so if the position u after one orbit when ψ = 2π is not the same as when ψ = 0, the
mass has not returned to its previous position and the orbit is not closed.

Axisymmetric Potentials: φ = φ(R, |z|)
We will derive equations for R, z, and ψ.

d

dt
~r =

d

dt
(rêr + zêz)

= ṙêr + rψ̇êψ + żêz + z
d

dt
(êz)︸ ︷︷ ︸

= 0 since êz =

0
0
1


= ṙêr + rψ̇êψ + żêz .

(125)
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Note that
d

dt
êr = ψ̇êψ

d

dt
êψ = −ψ̇êr

d

dt
êz = 0

(126)

then
d2

dt2
=

d

dt

(
ṙêr + rψ̇êψ + żêz

)
= r̈êr + ṙψ̇êψ + ṙψ̇êψ + r

d

dt

(
ψ̇êψ

)
+ z̈êz

= r̈êr + ṙψ̇êψ + ṙψ̇êψ + rψ̈êψ − rψ̇2êr + z̈êz

=
(
r̈ − rψ̇2

)
êr +

(
2ṙψ̇ + rψ̈

)
︸ ︷︷ ︸ êψ + z̈êz

=
1

r

d

dt

(
r2ψ̇
)

(127)

and for an axisymmetric potential

d2

dt2
~r = ~F =

(
−∂φ
∂r
, 0,−∂φ

∂z

)
(128)

so we get each component of the force:

radial : r̈ − rψ̇2 = −∂φ
∂r

tangential :
1

r

d

dt

(
r2ψ̇
)

= 0

⇒ d

dt

(
r2ψ̇
)

= 0

(using conservation of Lz = r2ψ = constant)

vertical : z̈ = −∂φ
∂z

.

(129)

We then rewrite this in terms of the effective potential:

φeff = φ+
L2
z

2r2
(130)

where the last term is the centrifugal barrier. Since

~v =
d

dt
~r (131)

then, using the above from ~̇r,

E =
1

2

(
ṙ2 + r2ψ̇2 + ż2

)
+ φ

=
1

2

(
ṙ2 + ż2

)
+ φeff

(132)
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so
r̈ = rψ̇2 =

∂φ

∂r

= rψ̇2 − ∂

∂r

(
φeff −

L2
z

2r2

)
= rψ̇2 − ∂ψeff

∂r
− L2

z

r3

= rψ̇2 − ∂φeff

∂r
− r4ψ̇2

r3
(using Lz = r2ψ̇)

= −∂φeff

∂r

(133)

and
z̈ = −∂φeff

∂z
. (134)

So finally we get the scalar equations for 4D orbits (E,Lz):

r̈ = −∂φeff

∂r

z̈ = −∂φeff

∂z

E =
1

2

(
ṙ2 + ż2

)
+ φeff .

(135)

Note that the orbits have a uniform rotation around the symmetry axis (z) with ψ̇ = Lz
r2 ,

but we have oscillations in r and z. If r is not oscillating, then z = 0, and any perturbation
leads to oscillations in z and r.

Guiding center and circular orbits:
φeff has a minimum at some Rg such that for a given Lz, φ(Rg, 0) is minimal:
At the minimum:

∂φeff

∂r

∣∣∣∣
r=Rg ,z=0

= 0

∂φeff

∂z

∣∣∣∣
r=Rg ,z=0

= 0

(136)

where symmetry implies that there is no force
at z = 0.

r# #=-π/2 #=π/2

$r
êr

ê$

Rg

r

ɸeff(r,0)

Then we get:

0 =
∂φeff

∂r

∣∣∣∣
Rg ,0

⇒∂φeff

∂r

∣∣∣∣
Rg ,0

=
L2
z

R3
g

= Rgψ̇
2

(137)

since
∂φeff

∂r
=
∂φ

∂r
− L2

z

r3
. (138)
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We also have
Ω2 = ψ̇2 =

L2
z

R4
g

. (139)

And since
∂φeff

∂r

∣∣∣∣
Rg ,0

=
∂φeff

∂z

∣∣∣∣
Rg ,0

= 0 (140)

then
r̈ = z̈ = 0 (141)

so we have a circular orbit with speed Ω = ψ̇. The minimum of φeff occurs at a radius Rg

at which a circular orbit has angular momentum Lz and E = φeff . This orbit is called the
guiding center. If an object is pushed off the guiding center, there is a restoring force that
leads to oscillations, or epicycles.

Epicycle approximation:
In disk galaxies, many stars are on mostly circular orbits, but they are not exactly circular.
We look for small perturbations around the circular orbit.
We will define our coordinate system (x, y) as

x = r −Rg

y = z
(142)

and expand φeff around (x, y) = (0, 0).
Keeping only second-order terms for the epicycle approximation, we get

φ̃eff(x, y) = φ̃eff(0, 0)+(φ̃eff,x)x+(φ̃eff,y)y+(φ̃eff,xy)xy+
1

2
(φ̃eff,xx)x

2 +
1

2
(φ̃eff,yy)y

2 + . . . (143)

where

φ̃eff,x =
∂φ̃eff

∂x

∣∣∣∣
0,0

= 0

φ̃eff,y =
∂φ̃eff

∂y

∣∣∣∣
0,0

= 0

φ̃eff,xy =
∂2φ̃eff

∂x∂y

∣∣∣∣
0,0

= 0 (by symmetry).

(144)

We define κ and ν:
κ2 ≡ φ̃eff,xx = φeff,rr =

∂2φeff

∂r2

∣∣∣∣
Rg ,0

ν2 ≡ φ̃eff,yy = φeff,zz =
∂2φeff

∂z2

∣∣∣∣
Rg ,0

.

(145)

so
φ̃eff ≈

1

2
κ2x2 +

1

2
ν2y2 + φ̃eff(0, 0)

=
1

2
(κx)2 +

1

2
(νy)2 + φ̃eff(0, 0) .

(146)
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We can write down the equations of motion for

φ̃eff(x, y) = φ̃eff(0, 0) +
1

2
κ2x2 +

1

2
ν2y2 (147)

so

ẍ = r̈ = −∂φeff

∂r
= −∂x

∂r

∂φ̃eff

∂x
= −∂φ̃eff

∂x
= −κ2x

ÿ = z̈ = −∂φeff

∂z
= −∂y

∂z

∂φ̃eff

∂y
= −∂φ̃eff

∂y
= −ν2y

(148)

and we get the final equations of motion:

ẍ = −κ2x

ÿ = −ν2y
. (149)

This is harmonic oscillation with epicycle frequency κ and vertical frequency ν in addition
to the circular frequency

Ω(r) =
Lz
r2

=
vc
r

=

√
1

r

∂φ

∂r
(150)

where for the last equality we used the fact that the centripetal force is equal to the gravi-
tational force v2

c

r
= ∂φ

∂r
on a circular orbit.
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At r = Rg and Ω(Rg), we can rewrite κ in terms of Ω:(
r

dΩ2

dr
+ 4Ω2

) ∣∣∣∣
Rg

=

(
r

d

dr

(
1

r

∂φ

∂r

)
+ 4

L2
z

r4

) ∣∣∣∣
Rg

=

(
r

(
− 1

r2

∂φ

∂r
+

1

r

∂2φ

∂r2

)
+ 4

L2
z

r4

) ∣∣∣∣
Rg

=

(
− 1

r

∂φ

∂r︸︷︷︸+
∂2φ

∂r2
+ 4

L2
z

r4

)∣∣∣∣
Rg

= Ω2 =
L2
z

r4

=

(
−L

2
z

r4
+
∂2φ

∂r2
+ 4

L2
z

r4

) ∣∣∣∣
Rg

=

(
∂2φ

∂r2
+ 3

L2
z

r4

) ∣∣∣∣
Rg

=

(
∂

∂r

(
∂φ

∂r
− L2

z

r3

)) ∣∣∣∣
Rg

=

 ∂

∂r

 ∂

∂r

(
φ+

L2
z

2r2

)
︸ ︷︷ ︸

∣∣∣∣
Rg

= φeff

=
∂2φeff

∂r2

∣∣∣∣
Rg

=κ2

⇒ κ2 =

(
r

d(Ω2)

dr
+ 4Ω2

)
.

(151)

Motion in the epicycle approximation (valid for x, y, z � Rg):
We look at each component of the motion:

radial : r(t) = r0 cos (κt+ α) +Rg

vertical : z(t) = z0 cos (νt+ β)

tangential : ψ̇ =
Lz
r2

=
Lz
R2
g

(
1 +

x

Rg

)−2

= Ω(Rg)

(
1 +

x

Rg

)−2
(152)

where we use r = x + Rg in the tangential equation. Assuming that x � Rg and defining
Ωg ≡ Ω(Rg), we can approximate the tangential component to be:

ψ̇ ≈ Ωg

(
1− 2x

Rg

)
. (153)
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We then integrate over time, so

ψ(t) = Ωgt+ ψ0 −
2Ωgr0

κRg

sin(κt+ α) . (154)

This gives us circular motion of the guiding
center with a closed retrograde elliptical or-
bit in the frame of the guiding center. We
also have oscillations in the z direction with
frequency ν.

r# #=-π/2 #=π/2

$r
êr

ê$

Rg

r

ɸeff(r,0)

Rg

Oort constants: (see Problem Set 3)
Goal: measure the epicycle frequency κ at the position of the sun in the Milky Way by
measuring the motion of nearby stars (proper motion an the sky and line of sight velocity).

We use the galactic coordinate system to measure the location of stars in the sky (l, b):

r# #=-π/2 #=π/2

$r
êr

ê$

Rg

r

ɸeff(r,0)

Rg

b
l

R galactic 
center

sun

d

l: galactic longitude
b: galactic latitude

R is the distance from the sun to the galactic center (∼ 8kpc) and d is the distance from the
sun to the star. l measures the angle in the plane of the Milky Way away from the line of
sight to the galactic center, and b measures the angle above the plane of the galaxy. Within
this system, we find:

proper motion : µ ≈ d(A cos(2l) +B)

line of sight motion : v‖ ≈ dA sin(2l)
(155)

where A and B are the Oort constants given by:

A = −1

2

dΩ

dR

B = −
(

Ω +
1

2
R

dΩ

dR

)
.

(156)

More importantly, they can be related to κ:

κ2 = −4B(A−B) . (157)
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Luminosity-velocity relations:
We can relate properties of a galaxy to observables through several equations:

θ =
R

d
(apparent size)

F =
L

4πd2

v2 =
GM

R
.

(158)

Introducing surface brightness Σ

Σ =
F

θ2
=

L

4πd2
· d

2

R2

=
L

4π
· v4

G2M2

(159)

then
L =

v4

Σ4πG2(M/L)2
. (160)

If we assume, for a given class of galaxies, that the surface brightness and the mass-to-light
ratio are the same, then

L ∝ v4 . (161)

This introduces two important relations.

The Tully-Fischer relation is used for spiral galaxies and relates the maximum velocity in
the rotation curve vmax, which can be measured from HII spectra, and the luminosity:

L ∝ v4
max . (162)

The Faber-Jackson relation is used for ellipticals and relates the velocity dispersion σv to the
luminosity:

L ∝ σ4
v . (163)

Thus, we can get an estimate of the intrinsic luminosity of a galaxy be measuring stel-
lar velocities. The constant of proportionality is roughly L∗/(220 km/s)4, where L∗ is the
characteristic galaxy luminosity.

3.C Phase-space distribution function

We have described the individual orbits in a potential, but this is not sufficient to describe
galactic dynamics. We want information of the configuration of all particles. Each star is
described by its position ~x and velocity ~v, and we need to know this for all stars, i.e. how
stars are distributed in the 6D phase space (~x,~v).

We define a phase-space distribution function

f(~x,~v, t)d3 ~x d3~v (164)
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as the probability that at time t, a randomly chosen star has
(~x∗, ~v∗) ∈ ([~x, ~x+ d~x], [~v,~v + d~v]). This means that the function must be normalized for all
t, i.e. ∫

f(~x,~v, t)d3 ~x d3~v = 1 . (165)

Collisionless Boltzmann equation:
We want to describe the time evolution of f(~x,~v, t). Since probability cannot be destroyed,
the 6D continuity equation must hold.

We define the 6D phase-space vector

~w = (~x,~v) (166)

then
∂f

∂t
+

∂

∂ ~w

(
f ~̇w
)

= 0 . (167)

This is the same form as the standard 3D continuity equation. We can rewrite this by
expanding out ~w and using velocity ~v = ~̇x and acceleration ~a = ~̇v:

0 =
∂f

∂t
+

∂

∂ ~w

(
f ~̇w
)

=
∂f

∂t
+

∂

∂~x
(f~̇x) +

∂

∂~v
(f~̇v)

=
∂f

∂t
+

∂

∂~x
(f~v) +

∂

∂~v

(
f(−~∇φ)

)
=
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v
.

(168)

This gives us the collisionless Boltzmann equation (CBE):

∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v
= 0 . (169)

Note that another way to see this is by writing out df
dt

= 0 and taking the limits lim~x→∞ = 0
and lim~v→∞ = 0.

General Jeans equations:
A solution to the collisionless Boltzmann equation is difficult to obtain, so we instead study
moments of the CBE and the phase-space distribution.

Moments of the phase-space density give us some average quantities of the system.

a) The first moment gives the density n of the system:

n =

∫
f d3~v . (170)
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b) The second moment gives the average velocity v̄i:

v̄i =
1

n

∫
vif d3~v . (171)

c) The third moment gives the velocity dispersion σ2
ij:

vivj =
1

n

∫
vivjf d3~v

σ2
ij = vivj − v̄iv̄j = (vi − v̄i)(vj − v̄j) .

(172)

We now examine moments of the collisionless Boltzmann equation more closely. We break
each integral into three terms to simplify each individually.

a) First moment: ∫
d3~v

(
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v

)
= 0∫

d3~v
∂f

∂t︸ ︷︷ ︸+

∫
d3~v ~v

∂f

∂~x︸ ︷︷ ︸−
∫

d3~v
∂φ

∂~x

∂f

∂~v︸ ︷︷ ︸ = 0

1 2 3

(173)

1 :

∫
d3~v

∂f

∂t
=

∂

∂t

∫
d3~vf =

∂n

∂t

2 :

∫
d3~v ~v

∂f

∂~x
=

∂

∂~x

(∫
d3~v ~vf

)
=

∂

∂~x

(
n~̄v
)

=
∑
i

∂

∂xi
(nv̄i)

3 :

∫
d3~v

∂φ

∂~x

∂f

∂~v
=
∂φ

∂~x

∫
d3~v

∂f

∂~v
=
∂φ

∂~x
[f ]~v=+∞

~v=−∞ = 0

(174)

For the third term, we used the fact that phase-space distribution goes to 0 at ±∞ for
physical systems.

This gives us the 3D continuity equation:

∂n

∂t
+

∂

∂~x

(
n~̄v
)

= 0 . (175)

b) Second moment: ∫
d3~v vj

(
∂f

∂t
+ ~v

∂f

∂~x
− ∂φ

∂~x

∂f

∂~v

)
= 0∫

d3~v vj
∂f

∂t︸ ︷︷ ︸+

∫
d3~v vj~v

∂f

∂~x︸ ︷︷ ︸−
∫

d3~v vj
∂φ

∂~x

∂f

∂~v︸ ︷︷ ︸ = 0

1 2 3

(176)
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1 :

∫
d3~v vj

∂f

∂t
=

∂

∂t

∫
d3~v vjf =

∂

∂t
(nv̄j) =

∂n

∂t
v̄j + n

∂v̄j
∂t

= −v̄j
∑
i

∂

∂xi
(nv̄i) + n

∂v̄j
∂t

= n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i)

using the continuity equation
∂n

∂t
= −

∑
i

∂

∂xi
(nv̄i)

to go from the first line to the second

2 :

∫
d3~v vj~v

∂f

∂~x
=

∫
d3~v vj

∑
i

vi
∂f

∂xi
=
∑
i

∂

∂xi

∫
d3~v vjvif︸ ︷︷ ︸

= nvjvi = n
(
σ2
ij + v̄iv̄j

)
=
∑
i

∂

∂xi

(
n
(
σ2
ij + v̄iv̄j

))
3 :

∫
d3~v vj

∂φ

∂~x

∂f

∂~v
=

∫
d3~v vj

∑
i

∂φ

∂xi

∂f

∂vi
=
∑
i

∂φ

∂xi

∫
d3~v vj

∂f

∂vi

((k, l, i) are permutations of (1, 2, 3))

=
∑
i

∂φ

∂xi

∫
dvk

∫
dvl

∫
dvi

(
vj
∂f

∂vi

)
︸ ︷︷ ︸
= [vjf ]vi=+∞

vi=−∞ −
∫

dvi
∂vj
∂vi

f

= 0−
∫

dviδijf

= −
∑
i

∂φ

∂xi

∫
dvk

∫
dvl

∫
dviδijf

= −
∑
i

∂φ

∂xi

∫
d3~vδijf

= −n ∂φ
∂xj

(177)

Plugging each term back in, we get

n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i) +

∑
i

∂

∂xi

[
n
(
σ2
ij + v̄iv̄j

)]
+ n

∂φ

∂xi
= 0 (178)
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which we can rewrite

n
∂v̄j
∂t
− v̄j

∑
i

∂

∂xi
(nv̄i) +

∑
i

∂

∂xi
(nσ2

ij)+
∑
i

∂

∂xi
(nv̄iv̄j)︸ ︷︷ ︸+n

∂φ

∂xj
= 0

=
∑
i

(nv̄i)
∂

∂xi
v̄j +

∑
i

v̄j
∂

∂xi
(nv̄i)

(179)

where the two underlined terms cancel. This gives us

n
∂v̄j
∂t

+
∑
i

(nv̄i)
∂

∂xi
v̄j +

∑
i

∂

∂xi
(nσ2

ij) + n
∂φ

∂xj
= 0 . (180)

This is the Jeans equation, often written

∂v̄j
∂t

+
∑
i

v̄i
∂v̄j
∂xi

= − 1

n

∑
i

∂(nσ2
ij)

∂xi
− ∂φ

∂xj
(181)

Each term can be physically interpreted:

∂v̄j
∂t

: acceleration of fluid∑
i

v̄i
∂v̄j
∂xi

: kinematic viscosity/shear

− 1

n

∑
i

∂(nσ2
ij)

∂xi
: pressure

− ∂φ

∂xj
: gravity

(182)

Jeans equations in spherical systems:
We can convert to spherical coordinates and take velocity moments to give us the Jeans
equations in spherical coordinates. This is complicated!

To simplify, we take the radial Jeans equation and focus on steady-state symmetric systems.

Implications:

• ∂
∂t

= 0 since we have steady state

• v̄r = 0 otherwise we have net radial motion

• v̄θ = v̄φ = 0 or the symmetry is broken

• σ2
rφ = σ2

rθ = 0 or the symmetry is broken

• σ2
φφ = σ2

θθ ≡ σ2
t or the symmetry is broken.
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The simplified Jeans equation is:

1

n

∂

∂r
(nσ2

rr) +
2(σ2

rr − σ2
t )

r
= −∂φ

∂r
= −GM(< r)

r2
(183)

where we’ve plugged in gravity as the force.

We have three limits we can look at:

• σ2
rr � σ2

t : nearly circular orbits

• σ2
rr � σ2

t : nearly radial orbits

• σ2
rr = σ2

t : isotropic orbits

We define the anisotropy parameter:

β = 1− σ2
t

σ2
rr

(184)

which gives us a useful form of the Jeans equation for observations:

1

n

∂

∂r
(nσ2

rr) +
2βσ2

rr

r
= −GM(< r)

r2
. (185)

This depends only on radial components with uncertainty from β, assuming spherical sym-
metry and a steady-state system.

This can be simplified further to get mass estimates:

M(< r) = −r
2

G

(
1

n

∂

∂r
(nσ2

rr) +
2βσ2

rr

r

)
= −rσ

2
rr

G

(
r

nσ2
rr

∂

∂r
(nσ2

rr) + 2β

)
= −rσ

2
rr

G

(
r

n

dn

dr
+

r

σ2
rr

dσ2
rr

dr
+ 2β

)
= −rσ

2
rr

G

(
d lnn

d ln r
+

d lnσ2
rr

d ln r
+ 2β

)
(186)

where the last line can be measured with observations.

3.D Stability of stellar systems

The existence of equilibrium solutions to the collisionless Boltzmann equation does not assure
stability. Real stellar systems are subject to perturbations. What is important for stability?
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Small scales: Jeans instability and random motions

Consider a nearly uniform distribution of stars with per-
turbations with respect to a static uniform background.
We can study the stability of this configuration by in-
specting the continuity and the Jeans equations.

r# #=-π/2 #=π/2
$r

êr

ê$

Rg

r

ɸeff(r,0)

Rg

b
l

R galactic 
center

sun

d

Guiding 
Center

overdensity

non-rotating 
static system

We first rewrite and simplify the Jeans equations:

∂v̄j
∂t

+
∑
i

v̄i
∂v̄j

∂xi
= − 1

n

∑
i

∂(nσij)

∂xi
− ∂φ

∂xj
. (187)

We can rewrite the number density n using ρ = mn and assume that σij is isotropic so the
pressure is P = ρσ2

ij = ρσij = mnσ2
ij. Then we can rewrite the Jeans equations as:

∂~v

∂t
+
(
~v · ~∇

)
~v = −~∇φ− 1

ρ
~∇P . (188)

Similarly, the continuity equation becomes:

∂ρ

∂t
+ ~∇ · (ρ~v) = 0 . (189)

Note that we have dropped the¯ ’s (average value symbols) for simplicity in our
equations and ~v is referring to the average velocities at (~x, t). We will continue with this
convention in the following calculations.

Small perturbations:
For a small perturbation in a static uniform background, we have

ρ = ρ0 + ερ1(~x, t)

~v = ~v0 + ε~v1(~x, t)

P = P0 + εP1(~x, t)

φ = φ0 + εφ1(~x, t) .

(190)

We can choose φ0 = 0 and, since the background is static, ~v0 = ~0. ρ0 and P0 are both
nonzero constants. Note that this is not a physical set of conditions since Poisson’s equation
gives ∇2φ0 = 4πGρ0 so φ0 = 0 implies ρ0 = 0, but we continue with our calculations ignoring
this. This is known as the Jeans swindle.

We can plug this into the continuity equation:

∂

∂t
ρ0 + ε

∂

∂t
ρ1 + ~∇

(
ρ0~v0 + ερ1~v0 + ερ0~v1 + ε2ρ1~v1

)
= 0 . (191)
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Performing derivatives on constants and neglecting terms of order ε2, this becomes:

ε
∂

∂t
ρ1 + ~∇ · (ερ0~v1) = 0

⇒∂ρ1

∂t
+ ρ0

~∇ · ~v1 = 0 .

(192)

We then plug this into the Jeans equation:(
∂~v0

∂t
+ ε

∂~v1

∂t

)
+
(

(~v0 + ε~v1) · ~∇
)

(~v0 + ε~v1) = −~∇ (φ0 + εφ1)− 1

ρ0 + ερ1

~∇ (P0 + εP1) (193)

then
ε
∂~v1

∂t
= −ε~∇φ1−

1

ρ0 + ερ1

~∇ (εP1)︸ ︷︷ ︸ .
≈ ε

~∇P1

ρ0

(194)

We can write
~∇P1 =

∂P1

∂~x
=

(
∂P1

∂ρ

) ∣∣
ρ0︸ ︷︷ ︸
∂ρ1

∂~x

v2
s

(195)

where vs is the sound speed, or the speed at which perturbations can propagate. Returning
to the previous equation, this gives us:

ε
∂~v1

∂t
= −ε~∇φ1 − ε

v2
s

ρ0

~∇ρ1

⇒∂~v1

∂t
= −~∇φ1 −

v2
s

ρ0

~∇ρ1 .

(196)

We now combine the time derivative of the continuity with the Jeans equation:

∂2ρ1

∂t2
+
∂

∂t

(
ρ0
~∇ · ~v1

)
= 0

⇒ ∂2ρ1

∂t2
+ ρ0

~∇ ·
(
∂~v1

∂t

)
︸ ︷︷ ︸ = 0

= −~∇2φ1 −
v2
s

ρ0

~∇2ρ1

(197)

so
∂2ρ1

∂t2
+ ρ0

(
−~∇2φ1 −

v2
s

ρ0

~∇2ρ1︸ ︷︷ ︸
)

= 0 .

= 4πGρ1 (from Poisson′s Equation)

(198)

Finally, we get a wave equation for ρ1:

∂2ρ1

∂t2
− 4πGρ0ρ1 − v2

s
~∇2ρ1 = 0 . (199)
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We use an ansatz for the solution of the form

ρ1 = C expi(
~k·~c−ωt) (200)

which gives the time evolution of perturbations. We plug this into the wave equation and
get

w2 = v2
sk

2 − 4πGρ0 . (201)

We have two solutions:

w2 > 0: the exponent is imaginary, so we get stable oscillating modes

w2 < 0: the exponent is real, so we get unstable growing or decaying modes

If w = 0:

λ2
J =

(
2π

k

)2

=
πv2

s

Gρ0

. (202)

Jeans length and mass:
The Jeans length λJ is the maximum size a perturbation can be to remain stable. The Jeans
mass MJ is the corresponding mass enclosed within the Jeans length of a given substance.

λ2
J =

πv2
s

Gρ0

=
πσ2

Gρ0

MJ =
4

3
πρ0λ

3
J

. (203)

So we have stability for λ < λJ and M < MJ . Note that for collisional gas, the Jeans length
is determined by the sound speed vs and for collisionless dark matter and stars, the Jeans
length is determined by the pressure from the velocity dispersion σ.

Meaning of the Jeans length:
If perturbations can be crossed before collapse, pressure can stabilize the collapse.

The free-fall time is
tff ∼

1√
Gρ

(204)

and the perturbation crossing time is

tcross ∼
r

vs
. (205)

Then we get collapse if
tcross > tff
r

vs
>

1√
Gρ

⇒r2 >
v2
s

Gρ

(206)
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which is similar to the Jeans length result, differing only by a factor of π. So, random motion
and pressure can stabilize perturbations on small scales.

Large scales: Toomre instability and rotational motion.

Consider a rotating stellar disk where radial perturba-
tions can occur. We study the stability of this config-
uration by inspecting the centripetal and acceleration
forces. Note that mass and angular momentum are con-
served during the perturbation: ṁ = L̇ = 0.

r# #=-π/2 #=π/2
$r

êr

ê$

Rg

r

ɸeff(r,0)

Rg

b
l

R galactic 
center

sun

d

Guiding 
Center

overdensity

non-rotating 
static system

R

rotating 
non-static system

Ω

During the perturbation, R → R′ with R′ = R − dr. We want to know when this will
lead to collapse and when it will be stable. This is a competition between centripetal and
gravitational forces.

The change in gravitational acceleration is

ag =
GπR2Σ

R′2
, and πR2Σ is mass (Σ is surface density)

⇒dag
dR′

=
−2GπR2Σ

R′3
.

(207)

The change in centripetal acceleration, with rotational frequency of the patch Ω, is

L = ΩR2 = Ω′R′2 (since L̇ = 0)

⇒Ω′ = Ω

(
R

R′

)2

.
(208)

So
ac =

R′2Ω′2

R′
= R′Ω′2 = Ω2 R

4

R′3

⇒dac
dR′

=
−3Ω2R4

R′4
.

(209)

Stability: the system is stable if |dag| < |dac|. So we need

2πGR2Σ

R′3
<

3Ω2R4

R′4

⇒ 2πGΣ

3Ω2
< R

R

R′︸︷︷︸
≈ 1

(210)

and the disk is stable if

Rrot >
2πGΣ

3Ω3
. (211)
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Full stability criterion: On small scales, we have stability if R < λJ and on large scales,
we have stability if R > Rrot. Small scales are stabilized by random motion and large scales
are stabilized by rotational motion. The system is unstable if λJ < R < Rrot. We can
combine the two criteria and get full stability when λJ ≥ Rrot. This gives us (adapting λJ
from an arbitrary 3D potential to a 2D disk):

π

8

σ2

GΣ
≥ 2πGΣ

3Ω2

⇒σcrit ≥
4√
3

GΣ

Ω
.

(212)

Note that the angular speed of the patch is only approximately Ω. It actually rotates with
epicyclic frequency κ, which is not too far off from Ω for real galaxies. We can relate κ to Ω
for a typical galactic disk:

κ2(Rg) =

(
r

dΩ2

dr
+ 4Ω2

) ∣∣
Rg

(213)

and in galaxies with circular velocity that is approximately constant:

Ω =
vc
r
⇒ κ2 = 2Ω2 ⇒ κ =

√
2Ω . (214)

So for galaxies:

σcrit ≥
4√
3

GΣ

κ2/
√

2
=

√
32

3︸ ︷︷ ︸ GΣ

κ
.

3.26

(215)

Toomre finds
σcrit = 3.26

GΣ

κ
(216)

Toomre criterion Q:
We can write the stability criterion Q for rotating disks:

Q =
σ

σcrit

{
> 1 : stable
< 1 : unstable

(217)

Here we show Q as a function of radius from
the galactic center for the galaxy DLA0817
(the Wolfe Disk) from Neelemen et al. 2020.
The solid line shows Q assuming the gas den-
sity falls off exponentially. The points show
observed data, which underestimates Q likely
due to beam smearing which increases mea-
sured surface density.
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3.E Stellar population synthesis

So far, we have only viewed stars as massive particles without other features. But:

• Stars are constantly born at a star formation rate (SFR) ψ(t)

• Stars are born with a certain mass spectrum. This is the initial stellar mass function
(IMF) φ(m)

• Stars emit light with flux at different wavelengths Fλ.

The galactic spectrum is a superposition of stellar spectra. Adding the stellar spectra taking
into account ψ(t) and φ(m) allows us to constrain the initial mass function and star formation
rate of galaxies. We can use this to learn about the stellar population and galaxy evolution.

Star formation rate:
The units of star formation rate are usually [ψ] = M�/yr. For the Milky Way, ψ(t) ∼ 3M�/yr

(t) =
dm

dt
. (218)

There are a few observational indications for the star formation rate:

• Far infrared (FIR) emission from dust around young stars:

SFRFIR

M�/yr
∼ LFIR

5.8× 109L�
(219)

• Hα emission from HII regions around young stars:

SFRHα

M�/yr
∼ LHα

1.3× 1041erg/s
(220)

• Ultraviolet (UV) radiation from young stars:

SFRUV

M�/yr
∼ LUV

7.2× 1027erg/s
(221)

We also have theoretical models, for example, the exponential model

(t) ∝ e−t/τ . (222)

For a given galaxy, the star formation rate depends on the density and temperature of the
gas. When gas is cold and dense, it is able to collapse into stars. The star formation rate
can be roughly approximated by dividing the gas mass by the free-fall time.
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The above plot on the left is from Torrey et al. 2019 shows a phase diagram of gas in the
IllustrisTNG simulations at z = 0 and is split into various phases of the ISM. Darker regions
show a higher gas mass, and the percentages show the total fraction of gas mass in each
phase. The condensed material is in the lower right corner, and stars form along the thin
line. The plot to the right is from Krumholz et al. 2009 shows the star formation rate surface
density as a function of gas surface density. Each point is a different galaxy, compiled from
several sources (different colors).

The star formation rate of a galaxy depends primarily on the molecular gas within a galaxy
rather than the total gas. However, it can be difficult to predict what fraction of a galaxy’s
gas is in the molecular phase. This fraction depends on the total gas density, metallicity,
and clumping on small scales. To get more precise predictions for star formation, it is also
necessary to consider events such as supernovae and shocks.

Over cosmic history, the star forma-
tion rate (across all galaxies) started
low and increased, peaked at z ≈ 2,
and has been decreasing since.

Initial stellar mass function:
φ(m)dm is the relative number of stars born with masses in (m,m + dm). Note that the
units are [φ] = mass−2, the number of stars formed per mass interval per total mass. This
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is normalized so ∫ mh

ml

mφ(m)dm = 1M� (223)

ml ∼ 0.08M� since hydrogen fusion can’t occur in stars lower than this and mh ∼ 100M�
since the Eddington limit prevents stars larger than this.

Example:
M∗ is the total mass of newly formed stars. Then the total number dN(m) and total mass
dM(m) of stars born in (m,m+ dm) are

dN(m) =
M∗
M�

φ(m)dm

dM(m) =
M∗
M�

mφ(m)dm .

(224)

The initial mass function is often assumed to
follow the Salpeter mass function:

φ(m) ∝ m−(1+x), x = 1.35 . (225)

There are other forms, like the Chabrier func-
tion, although the form of the initial mass
function is uncertain since it depends on re-
lating luminosity and mass and we observe
the present day mass function, not the initial
mass function.

Stellar spectra:
The stellar spectrum of a star is given by its luminosity L, effective temperature Teff , and
chemical composition z. The evolution of a star in the (L, Teff) plane (stellar evolutionary or
HR diagram track) only depends on the initial mass and initial metallicity. Once the initial
mass and metallicity are known, one can calculate a stellar spectrum.

From the Stefan-Boltzmann law L = 4πR2σT 4
eff , we can see that L and T are linearly related

on the (logarithmic) HR diagram through R:

log(L) = 2 log(R) + 4 log(T ) . (226)

Stars along the R = 1 line form the main sequence.
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Stars move in the HR diagram as they age and go
through the stellar stages (main sequence, red giant,
white dwarf, etc.).
Time spend on the main sequence is

τMS ∝M−3 . (227)
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This comes from assuming that the lifetime of a star depends on how much fuel it has (its
mass) and how fast it burns that fuel (rate of energy burning, luminosity)

τMS ∝
M

L
. (228)

From the observed mass luminosity relationship, L ∝M4 so

τMS ∝
M

L
∝ M

M4
∝M−3 . (229)

For low mass stars (M < 0.7 M�), L ∝M3 so τMS ∝M−2.

Population synthesis:
A galaxy spectrum is a superposition of stellar spectrum:

Lλ =

∫ t

0

Lcp
λ (t− t′, Z(t′))ψ(t′)dt′ . (230)

We can measure time from t′ that the stars formed so τ = t− t′ and τ0 = t′. ψ(t′) is the star
formation rate at t′. Lλ is the luminosity at λ per unit stellar mass of all stars of a coeval
population of age τ with initial metallicity Z(τ0):

Lcp
λ (τ, Z(τ0)) =

∫
Lλ(m,Z(τ0), τ)

φ(m)

M�
dm (231)

where Lλ is the luminosity at wavelength λ of a star with initial massm and initial metallicity
Z(τ0) at time τ .

A few notes:

• Lλ(t) is a convolution of φ, ψ, and Lλ.

• φ and ψ are not known precisely.

• There are sophisticated codes available to numerically iterate to figure out φ and ψ:

– assume an initial mass function φ
– impose a star formation rate
– run convolution
– compare with data (can break some degeneracies with spectral features)
– adjust SFR and IMF and repeat.
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3.F Chemical evolution of galaxies

We have used stellar population synthesis to constrain the initial mass function and the star
formation rate. Chemical evolution can also be used to learn about the baryonic history of
a galaxy. We use heavy elements as a chronometer. The general chemical evolution follows:

• t = 0: no heavy elements

• stellar nucleosynthesis generates heavy elements

• supernovae eject heavy elements into the interstellar medium

• heavy elements are incorporated into new stars.

The metallicity Z of a star is

Z =
mass of heavy elements

total mass
(232)

and is often quoted as a fraction of the solar metallicity Z/Z� with Z� ≈ 0.02.

The abundance
[
X
Y

]
of elements is a comparison between two elements X and Y , e.g.

[
Fe
H

]
.

We report it as the fraction of the log of the solar abundance:[
X

Y

]
= log

(
nx/ny

(nx/ny)�

)
(233)

so
[
X
Y

]
= 0 means the star has the same abundance as the sun,

[
X
Y

]
= −1 means the star

has 1
10

of the solar abundance,
[
X
Y

]
= −2 means the star has 1

100
of the solar abundance, etc.

Note that the metallicity measures by mass and abundance measures by number.

Modelling chemical evolution:

M is the total mass

Ms is the mass in stars

Mg is the mass in gas

f is the gas inflow rate

e is the gas outflow rate

is the star formation rate

E is the gas ejection rate

EZ is the ejection rate of metals from
stars, supernovae, etc.

Zff is the infalling metals per time

ZMg is the mass of metals in gas
M = Ms +Mg

dM

dt
= f − e

dMg

dt
= ψ − E

dMg

dt
= −ψ + E + f − e

d(ZMg)

dt
= −Zψ + EZ + Zff − Ze

(234)
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This forms a complete chemical model. We can figure out individual terms and then solve.
We will use some approximations for an analytical solution.

E(t) =

∫ ∞
mt

(m− wm)ψ (t− τMS(m))φ(m)dm (235)

mt: Main sequence turnoff mass. This is the lowest mass of stars dying at time t.

m− wm: The ejected mass; wm is the remnant mass.

τm(m): Main sequence lifetime at mass m.

t−τm(m)φ(m): Birth rate of stars of mass m at time t− τm(m), which is the death rate
at time t.

Ez(t) =

∫ ∞
mt

[(m− wm)Z(t− τMS(m)) +mρZm]ψ(t− τMS(m))φ(m)dm (236)

(m−wm)z(t− τMS(m)): mass of metals that at time t− τMS(m) were locked in a star
of mass m and are now ejected with the envelop at time t.

mρZm: new metals produced by a star of mass m. (Note: some elements get destroyed,
for example lithium has a ρzm < 0.)

Instantaneous recycling approximation: (IRA)
We assume that the mass and elements of stars are returned to the interstellar medium
without delay and the ejecta are fully mixed immediately. This only works for massive
enough stars, m > mlim.

ψ(t− τm(m)) ≈ ψ(t) (237)

then
E(t) ≈ ψ(t)

∫ ∞
mlim

[m− wm]φ(m)dm = ψ(t)R . (238)

Stars below mlim never lose mass while stars greater than mlim immediately lose mass. This
is because massive stars get off the main sequence so quickly (τMS ∝M−3) so this process is
essentially instantaneous, τMS ≈ 0. R is the returned mass per star formed:

R =

∫ ∞
mlim

(m− wm)φ(m)dm . (239)

Then
Ez(t) ≈

∫ ∞
mlim

[(m− wm)Z(t) +mρZm]φ(m)dm

= ψ(t)Z(t)R + ψ(t)

∫ ∞
mlim

mρZmφ(m)dm

= ψ(t)Z(t)R + (1−R)yψ(t)

(240)
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where y is the mass of produced metals per remnant mass (white dwarfs, neutron stars, etc.)

y =
1

1−R

∫ ∞
mlim

mρZmφ(m)dm . (241)

This gives us the equations of chemical evolution in the instantaneous recycling approxima-
tion:

M = Ms +Mg

dM

dt
= f − e

dMs

dt
= (1−R)ψ(t)

dMg

dt
= −(1−R)ψ(t) + f − e

d(ZMg)

dt
= −zψ +RZ(t)ψ(t) + (1−R)yψ(t) + Zff − Ze

= (1−R)(−Z + y)ψ + Zff − Ze

(242)

We can combine the last two equations for dMg

dt
and d(ZMg)

dt
to get

Mg
dZ

dt
= (1−R)yψ(t) + (Zf − Z)f + Ze . (243)

Closed-box model:
The simplest evolution model is to assume a closed box (f = e = 0) containing only gas
(Mg(0) = M,Ms(0) = 0 with zero metallicity (Z(0) = 0)). The equations then simplify:

M = Ms +Mg

dM

dt
= 0

dMs

dt
= (1−R)ψ(t)

dMg

dt
= −(1−R)ψ(t)

d(ZMg)

dt
= (1−R)(−Z + y)ψ

Mg
dZ

dt
= (1−R)yψ(t) .

(244)

We can divide dMg

dt
by Mg

dZ
dt

to get
1

Mg

dMg

dZ
= −1

y
(245)

and integrate

ln(Mg)
∣∣Mg(t)

M
= ln

(
Mg(t)

M

)
=

∫ Z(t)

0

−dZ

y
= −Z(t)

y

⇒Z(t) = y ln

(
M

Mg(t)

) (246)
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so we have:

Z(t) = y ln

(
Mg(t = 0)

Mg(t)

)
(247)

which is the metallicity of gas as a function of only Mg(t).

Metallicity of stars:
In the closed box model, stars and gas must contain all the metals ever produced.

ZsMs + ZMg =

∫ t

0

∫ ∞
0

mρZmψ(t′)φ(m)dmdt′ (248)

where Zs is the average metallicity of stars and the right side of the equation represents the
mass of all metals injected into the interstellar medium until time t. Then

ZsMs + ZMg =

∫ t

0

(1−R)yψ(t′)dt′ ≈ (1−R)yψ̄(t)t . (249)

We can integrate our equation
dMs

dt
= (1−R)ψ(t) (250)

to get the mass
Ms = (1−R)ψ̄(t)t (251)

which matches the second equality in equation above. This makes sense since ψ̄(t) is the
total stellar mass and (1−R) subtracts the remnants. We can substitute u = Mg/M to get

Zs = y − Z Mg

M −Mg

= y − Z u

1− u
. (252)

So we finally get

gas : Z(s) = y ln

(
1

u(t)

)
stars : Zs(t) = y − Z(t)

u(t)

1− u(t)

(253)

where u is the gas fraction Mg/M and M is constant for the closed box model. As u →
0, Zs → y, which gives the typical metallicity of stars. This must be less than or equal to
the typical yield.

G-dwarf problem:
We want to measure the metallicity distribution of G stars. These stars have not evolved
much and are still on the main sequence. Their age is so high that they formed from a
very low metallicity gas, since Z(0) = 0. We can use the closed box result to predict their
metallicity distribution. However, we cannot use an average Zs since we are looking for a
distribution.
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We apply the closed-box model:

Ms(≥ u) = (1− u)M ⇒ Ms(≥ u)

Ms,0

=
1− u
1− u0

(254)

where Ms(≥ u) is the mass of stars formed while the gas fraction was ≥ u and ...0 refer to
present-day values.

Then the stellar mass fraction Ms(≥ u)/M was made from gas with Z ≤ y ln(1/u) and we
can rewrite the stellar mass fraction using u = e−Z/y and u0 = e−Z0/y:

Ms(≤ Z)

Ms,0

=
1− e−Z/y

1− u0

=
1− uZ/Z0

0

1− u0

. (255)

Then we can get the fraction of stellar mass with metallicity ≤ Z:

f(≤ Z) =
Ms(≤ Z)

Ms,0

=
1− uZ/Z0

0

1− u0

. (256)

However, the model does not agree well with the data
because the model is incomplete (infalls, variations in
the IMF, etc.).

3.G Active galaxies (AGN)

AGN is Active Galactic Nucleus.
Definition:

• Galaxies whose total luminosity is dominated by radiation not produced in stars. Stars
produce near-UV, optical, and near-IR light in blackbodies. Other sources may emit
radio or X-ray light.

• The energy generation is associated with a point-like source at the nucleus of the galaxy
(∼ black hole with mass 106 − 109M�).

AGN types:

• Radio galaxies:
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3. MODELLING GALAXIES

– high radio luminosity Lradio ≥ 1018L�

– radio emission from two external regions
(radio lobes)

– energized by jets
(particle acceleration Ee ∼ 1012 eV

– ∼ 50% E0/S0 galaxies, ∼ 50% quasars

– synchrotron emission of electrons Hercules A galaxy

• Quasars/QSO:
– Quasar (quasi-stellar radio source):

optical point source with radio jet

– QSO (quasi-stellar object):
like a quasar but no radio emission

– Quasars and QSO’s are similar phenom-
ena, 90% of optically found QSO’s are
radio quiet, ∼ 10% are radio loud

– mostly found in elliptical galaxies

– Lquasar ∼ 1045−48 erg/s

– synchrotron jets between 0.1 pc-1 Mpc

– maximum space density ∼ z = 2− 3

Einstein Cross gravitational lens

• BL Lac objects:

– quasar with enhanced continuum
emission

– highly variable

– extremely luminous

– highly polarized

– jet pointing towards observer
Markarian 501 galaxy

• Seyfert galaxies:
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– spiral galaxies

– bright unresolved nuclei (less luminous
than quasars)

– L ≈ 1042 − 1045 erg/s

Spanish Dancer galaxy

Structure of AGN physics:
Sizes: changes of state of the emission region propagate at maximum speed c. Variability
means state change:

∆tvariablec ∼ remission (257)

In the radio/optical band:
∆tvariable ∼ 1− 10 days

remission ∼ 10−3 − 10−2 pc

At TeV energies:
∆tvariable ∼ 1 day

remission ∼ 10−3 pc

We can compare this to the Schwarzschild radius for a black hole with mass M•:

Rs =
2GM•
c2

(258)

which gives a size for various masses:

M• = 106M� → Rs = 10−7 pc

M• = 107M� → Rs = 10−6 pc

M• = 109M� → Rs = 10−4 pc

(259)

which gives the variability in the vicinity of a supermassive black hole.

We can consider various possible energy sources for the observed variability:

• Stars: N∗ = 3× 108 O-type stars in the central region to get the necessary luminosity
(O stars have luminosity of ∼ 105.5L�), but this leads to a stellar density that is too
high and would be unstable.

• Supernovae: the energy of a supernova is ESN ∼ 1052 erg, so we would need 1010 super-
novae within 10−3 pc in 107 years. This would require producing 1010 stars continually,
which has the same problem as the source being stars (too dense and unstable).

• We need accretion onto a supermassive black hole to create the luminosity.

58Spanish dancer galaxy : NASA, ESA, Hubble; Processing & Copyright: Leo Shatz © 
Leo Shatz. All rights reserved. This content is excluded from our Creative Commons 
license. For more information, see https://ocw.mit.edu/help/faq-fair-use

https://apod.nasa.gov/apod/ap190702.html
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Accretion onto supermassive black holes (SMBH):
Idea: a supermassive black hole (M• ∼ 106 − 109.5M�) accretes 10−4 − 10 M�/ yr. Jets and
nonthermal radiation are created by the accretion disk (gravitational energy is converted to
thermal energy and radiation).

The radiative efficiency of this process is 1
16
, so the luminosity of the accretion disk is ap-

proximately given by:

Lacc ≈
1

16
ṁc2 (260)

which means that 1 g of material produces approximately 106 kwh. We can compare the
efficiency of an accretion disk ( 1

16
) to the efficiency of hydrogen burning, which is 0.007 (so

LH−burning ≈ 0.007ṁc2).

The Eddington luminosity is the maximum possible AGN luminosity, which is reached when
the radiation pressure exceeds the gravitational acceleration per area. This comes from
processes like Thomson scattering. The radiation pressure is given by

Pγ =
E

c
=
hν

c
. (261)

We can write the momentum per time (equivalent to force) as L/c, so the pressure is force
per area

Ptotal =
L

4πr2c
. (262)

We find where the radiative force on a fully ionized plasma (i.e. the force on an e−) exceeds
the gravitational force on a proton for a black hole of mass M•:

Frad > Fgrav

L

4πr2c
σT >

GM•mp

r2

(263)

where σT is the Thomson cross section, so the radiative force on an electron is Frad = σTPtotal.
This gives the Eddington luminosity

Ledd =
4πcGM•mp

σT
= 1.3× 1038 M•

M�
erg/s . (264)

To achieve AGN luminosities, the SMBH must be massive enough to to be blown apart.

This leads to the Eddington accretion rate, which is the maximal possible accretion rate
possible for an accretion disk. This is reached for when Lacc exceeds Ledd:

Lacc > Ledd

1

16
ṁc2 > 1.3× 1038 M•

M�
erg/s

(265)

so ṁedd occurs when the two are equal:

ṁedd = 5× 10−10 M•
M�

M�
yrs

. (266)
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3. MODELLING GALAXIES

An accretion disk is formed when gas spirals in from large distances until the innermost stable
orbit (ISCO). Viscous processes in the disk lead to heating to temperatures T ∼ 108 K. This
is highly efficient in releasing energy.

Unified model of AGN:
Different AGN types are manifestations of the same phenomenon:

• SMBH at the center with M• ∼ 106 − 1010M�

• An accretion disk extending to ∼ 100− 1000rs emits the X-ray, UV, optical, and TeV
radiation

• Jets are made of radio synchrotron radiation from strong magnetic fields

• A dust torus from ∼ 1 pc to ∼ 50− 100 pc produces IR emission

• Broad line region (BLR) formed from clouds of thick gas within ∼ 0.1−1pc (velocities
are faster near the black hole, v ∼ 104 km/s

• Narrow line region (NLR) formed from clouds of thin gas within ∼few pc (farther away
from the black hole, v ∼ 100 − 1000 km/s. Slower velocities leads to less broadening
of lines scattered in the clouds, hence narrow line region).

 

Zero Age 
Main Sequence

log(L)

log(Teff)

Giant Branch closed box
f(≤z)

log(z/z )

data

-1 0

f

e

jet

disk
dust 
torus

BLR

NLR

The observed manifestation depends on the viewing angle and the accretion rate. For exam-
ple, BL Lac objects have a line of sight directly down the jet and a high accretion rate.
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Part II

Cosmology and Structure Formation
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1. COSMOLOGY

1 Cosmology

Cosmology is the study of dynamics of the entire Universe as a single dynamical system.

1.A Cosmological Principle and dynamics

• The Universe is homogeneous: it is uniform on large scales.

• The Universe is isotropic: it looks the same for all observers on large scales.

This implies that the space-time metric is the same everywhere, which generates symmetries
and simplifies the solutions to general relativity equations.

Hubble Law:
We observe that

~v = H0~r (267)

where H0 ∼ 70 km/s/Mpc refers to the present-day Hubble factor. The specific form of this
law can be derived from the cosmological principles:
• Linearity (follows from isotropy):

Suppose ~v = f(~r).
Then from Observer A’s perspective

~v1 = f(~r1) and ~v2 = f(~r2)

and ~v1 − ~v2 = f(~r1)− f(~r2) .

From Observer B’s perspective

~v1 − ~v2 = f(~r1 − ~r2)

so we find that

f(~r1 − ~r2) = f(~r1)− f(~r2) .

This implies that f is linear since isotropy
requires that each observer sees the same
Hubble law.

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

• Uniqueness (follows from homogeneity):
f(...) is linear, so

f(~r) = H~r (268)

where H is a matrix.
We assume that it is non-diagonal, otherwise a special direction would be preferred
(since it introduces an axis), and H = H01. Then

f(~r) = H0~r . (269)
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1. COSMOLOGY

Dynamics of cosmological expansion:
Hubble’s law implies cosmological expansion. General relativity allows a detailed derivation
of the dynamics, but here we use Birkhoff’s theorem to get initial insight. Birkhoff’s theorem
states that the dynamics of a uniform expanding self-gravitating sphere is equivalent to a
section of the Universe as a whole.

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

M(< a) =
4

3
πa3ρ

⇒ä = −GM(< a)

a2
= −4πGρ

a2
· 1

3
a3

(270)

We multiply each side by ȧ:

äȧ = −4πGρ

3
aȧ

= −4πGρ0

3
a3

0a
−2ȧ (since ρ = ρ0

a3
0

a3
) .

(271)

Since äȧ = d
dt

(
1
2
ȧ2
)
and a−2ȧ = d

dt

(
− 1
a

)
, we get:

d

dt

(
1

2
ȧ2

)
= −4πGρ0a

3
0

3

d

dt

(
−1

a

)
. (272)

Integrate
∫
dt on both sides:

1

2
ȧ2 =

4πGρ0a
3
0

3

1

a
+ κ̃ . (273)

Here, κ̃ is the integration constant, and we can use the density expression ρ0a
3
0 = ρa3 to

simplify our equation:
1

2
ȧ2 =

4πG

3
ρa2 + κ̃ . (274)

So the dynamics is given by (
ȧ

a

)2

=
8πG

3
ρ+

k̃

a2
. (275)

This is the Friedmann equation for Λ = 0. With a cosmological constant Λ, we have(
ȧ

a

)2

=
8πG

3
ρ+

k̃

a2
+

Λ

3
. (276)
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Here, a is the scale factor such that
length l = l0

a
a0
. Also note that:(

ȧ

a

)2

=
ṙ

r
=
v

r
= H

(
H(t) ≡ ȧ

a

)
8πG

3
ρ is the matter/radiation density

κ̃

a2
is the curvature

Λ

3
is the cosmological constant

Since volume grows with the length cubed and the total mass in the universe is constant,
the matter density is proportional to a−3. The radiation density also decreases due to the
increasing volume but also decreases as the wavelengths are stretched, so radiation density
is proportional to a−4. The dark energy Λ is constant.

The plot above shows how the scale factor grows with time for several different types of
universes. Our current understanding of our universe is that it is described by the ΛCDM
model, where roughly 30% of the energy budget is matter, 70% is dark energy, and there
is a very small amount of radiation and no curvature. If there were positive or negative
curvature, we would get an open ore closed universe. There are also several toy universes
that are often useful to think about. A flat, dark energy-only universe is the de Sitter model
and a flat, matter-only universe is the Einstein-de Sitter model An empty universe has only
a curvature term, and is an open universe.

Dynamical evolution of the Universe:
Different terms in the Friedmann equation dominate at different times.

• radiation term ∝ a−4 =⇒ dominates at very early times

• matter term ∝ a−3 =⇒ dominates at early times

• curvature term ∝ a−2 =⇒ dominates at medium times

• Λ term ∝ constant =⇒ dominates at late times

Therefore, from the Friedmann equation, we can derive different regimes of the Universe:

• radiation regime
ȧ2 ∝ a−2

ȧ ∝ a−1

ada ∝ dt

=⇒ a ∝ t
1
2

H(t) = ȧ
a

= 1
2t

=⇒ t0 =
1

2

1

H0
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1. COSMOLOGY

• matter regime
ȧ2 ∝ a−1

ȧ ∝ a−
1
2√

ada ∝ dt

=⇒ a ∝ t
2
3

H(t) = ȧ
a

= 2
3t

=⇒ t0 =
2

3

1

H0

• curvature regime
ȧ2 ∝ constant
ȧ ∝ constant
da ∝ dt

=⇒ a ∝ t
H(t) = ȧ

a
= 1

t

=⇒ t0 =
1

H0

• Λ regime
ȧ2 ∝ a2 Λ

3

ȧ ∝ a
√

Λ
3

da
a
∝
√

Λ
3
dt

=⇒ a ∝ e
√

Λ
3
t =⇒ exponential growth

As the universe evolves, it
expands at different rates
depending on the regime
(radiation/matter/Λ).

1.B Dynamics derived with general relativity

Goal: use the field equation

Gµν =
8πG

c4
Tµν − Λgµν (277)

to derive the Friedmann equation.
Gµν : Einstein tensor; 1st and 2nd derivatives of the metric
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1. COSMOLOGY

Tµν : stress-energy tensor
gµν : metric (similar to Poisson’s equation 52Φ = 4πGρ+ Λ

3
with Φ replaced with curvature)

First we need to specify gµν and Tµν .

Metrics:
The space-time interval is

ds2 = gµνdx
µdxν . (278)

Some examples of spatial metrics:

• 2D-flat space in Cartesian coordinates:

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dx dy

)(1 0
0 1

)(
dx
dy

)
= dx2 + dy2 (279)

• 2D-flat space polar coordinates:

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dr dθ

)(1 0
0 r2

)(
dr
dθ

)
= dr2 + r2dθ2 (280)

• 2D-curved space:

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

ds2 =
(
dθ dϕ

)(R2 0
0 R2 sin2 θ

)(
dθ
dϕ

)
= R2(dθ2 + sin2 θdϕ) (281)

We can rewrite χ = Rθ, so

ds2 = dχ2 +R2 sin2 χ

R
dϕ2 . (282)

When R goes to infinity, we have

sin

(
χ

R

)
≈ χ

R
(283)

⇒ ds2 = dχ2 + χ2dϕ2 (284)

which is gives us flat space!

• 4D space time:

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (285)

and
ds2 = −c2dt2 + dx2 + dy2 + dz2 . (286)
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Robertson-Walker metric:
The metric form follows from homogeneity and isotropy, and the field equations give us the
time evolution:

ds2 = −c2dt2 + a(t)
[
dχ2 + f 2

k (χ)
] (

dθ2 + sin2θdϕ2
)

(287)

and

fk(χ) =


k−1/2 sin (k1/2χ), closed k > 0

χ, flat k = 0

|k|−1/2 sinh (|k|1/2χ), open k < 0

(288)

with the units for k: [k] = 1
L2 .

Derivation of the Friedmann equations:
We have the stress energy tensor:

Tµν =

(
T00
∼= energy density T0j

∼= energy flux
Tj0 ∼= momentum density Tik ∼= stress tensor

)
(289)

The stress tensor Tik is force per unit area:(
Tii ∼= pressure Tik ∼= shear

)
(290)

Tµν has to be a perfect fluid with no shear or isotropic pressure:

Tµν = (ρc2 + p)uµuν −
p

c2
gµν (291)

In the rest frame of a comoving observer:

Tµν =


−ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

 (292)

To evaluateGµν , we take the derivative of the metric. We then plug this into the Einstein field
equations, which gives two independent equations. This leads to the Friedmann equations:(

ȧ

a

)2

=
8πG

3
ρ− kc2

a2
+

Λc2

3

ä

a
= −4πG

3

(
ρ+

3p

c2

)
+

Λc2

3

. (293)

For relativistic bosons and fermions p = ρc2/3, and for non-relativistic particles p = 0.

Critical density and density parameters:
The critical density ρcrit is the density that gives a flat universe (k = 0) and is given by

ρcrit =
3H2(t)

8πG
(294)

67



1. COSMOLOGY

with present-day value

ρcrit,0 =
3H2

0

8πG
≈ 1.8× 10−29h2 g/cm3 . (295)

For a sphere with radius a filled with the critical density, the gravitational potential is equal
to the specific kinetic energy:

G4
3
πρcrita

3

a
=
ȧ2

2
. (296)

This is the limiting case between an open and closed universe and leads to eternal expansion.

We define the cosmological density parameters in terms of the critical density:

Ωm(t) =
ρm(t)

ρcrit(t)

Ωr(t) =
ρr(t)

ρcrit(t)

Ωk(t) = −kc
2

H2

ΩΛ(t) =
Λc2

3H2
=

ρΛ(t)

ρcrit(t)
, ρΛ(t) =

Λc2

8πG

Ω(t) = Ωm(t) + Ωr(t)

(297)

The present-day values are:
Ωm,0 =

ρm,0
ρcrit,0

Ωr,0 =
ρr,0
ρcrit,0

Ωk,0 = −kc
2

H2
0

ΩΛ,0 =
ρΛ,0

ρcrit,0

Ω0 =
ρ0

ρcrit,0

(298)

so
ρm = Ωm,0ρcrit,0a

−3

ρr = Ωr,0ρcrit,0a
−4

ρk = Ωk,0ρcrit,0a
−2

ρΛ = ΩΛ,0ρcrit,0 .

(299)

We also often consider the baryon density parameter Ωb separately from the total matter
density, so the total matter density is the sum of the baryon and dark matter densities
Ωm = Ωdm + Ωb.
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Our current measurements of these values are (from the Planck 2018 results)

Ωm,0 = 0.315± 0.007

Ωdm,0 = 0.264± 0.003

Ωb,0 = 0.0493± 0.0003

Ωk,0 = 0.0007± 0.0019

ΩΛ,0 = 0.6847± 0.0073

(300)

with H0 = 67.4 ± 0.5 km/s/Mpc. The radiation parameter Ωr,0 can be derived from the
measured temperature of the CMB and relating the photon and neutrino density to get
Ωr,0 ≈ 10−4. We discuss how to obtain these values from observations in Part III.

We can rewrite first Friedmann equation:

H2(t) =
8πG

3
(ρm + ρr + ρΛ)− kc2

a2

=
8πG

3
ρcrit,0[Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0]− kc2

a2

(ρcrit,0 =
3H0

2

8πG
)

= H0
2

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩΛ,0 −

kc2

a2H0
2

]
(− kc

2

H0
2 = Ωk,0 = 1− Ωr,0 − Ωm,0 − ΩΛ,0)

= H0
2
[
Ωr,0a

−4 + Ωm,0a
−3 + Ωk,0a

−2 + ΩΛ,0

]

(301)

So we find:
H2(a) = H0

2E2(a)

E2(a) = Ωr,0a
−4 + Ωm,0a

−3 + Ωk,0a
−2 + ΩΛ,0

(302)

which is a useful form of the Friedmann equation.

Notes:

• Radiation dominates in early times, then matter, then the cosmological constant.

• Matter-Λ equality occurs when ΩΛ = Ωm:

ΩΛ,0 =
Ωm,0

a3

=⇒a ≈ 1

2.3
, z ≈ 1.3 (z ≈ 1 is 6− 7 Gyr after the Big Bang) .

(303)

• Matter-radiation equality occurs when Ωr = Ωm:

Ωr,0a
−4 = Ωm,0a

−3 (304)

=⇒a ≈ 1

3700
, z = 3700 . (305)

• Observationally, Ωk,0 ≈ 0.
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1.C Observational cosmology

Goal: relate the cosmological parameters to observations.

Redshift:
Redshift z is defined by the difference in observed wavelength and emitted wavelength of
light:

λobs

λem

= 1 +
λobs − λem

λem

≡ 1 + z (306)

In cosmology, this is due to the expansion of space. Light travels from the source at
(tem, aem, zem) to the observer at (tobs, aobs, zobs).

Observer 
      A

r1, 
v1

Observer 
B

r2, 
v2

r1-r2, 
v1-v2

a

%

B A

Observer at &obs

λobs 'tobs =
λobs
c

B A

Source at &em

λem 'tem = λem
c

observation, z=0 emission, z>0

The spatial hypersurface can shrink or expand depending on a(t), so λobs is not necessarily
equal to λem. Photons always travel along the shortest path, so for light we have:

ds = 0⇒ cdt = a(t)dχ (307)

Pulse A :

∫ χobs

χem

dχ =

∫ tobs

tem

cdt

a(t)

Pulse B :

∫ χobs

χem

dχ =

∫ tobs+δtobs

tem+δtem

cdt

a(t)
=

∫ tobs

tem

...+

∫ tobsδtobs

tobs

...−
∫ tem+δtem

tem

≈
∫ tobs

tem

cdt

a(t)
+

cδtobs

a(tobs)
− cδtem

a(tem)

(308)

then
cδtobs

a(tobs)
=

cδtem

a(tem)
⇒ λobs

λem

=
aobs

aem

(309)

so
aobs

aem

= 1 + z . (310)

For a0 = 1 (observing today) we have:

1

a
= 1 + z

a =
1

1 + z
.

(311)
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Note: the change of luminosity L = energy of photons
time

is affected “twice" by expansion since

λobs

λem

=
δtobs

δtem

=
aobs

aem

⇒Lobs =
hνobs

δtobs

=
hνem

δtem

(
aem

aobs

)2

= Lem

(
aem

aobs

)2

.

(312)

If aobs = 1, zobs = 0 and aem = a, zem = z, we have

Lobs = Lem

(
1

1 + z

)2

⇒ Lobs =
Lem

(1 + z)2
.

(313)

Distance measures:
Question: what is the distance between a source at (z, t, a) and an observer?
In static Euclidean space, we can measure a unique distance in different ways. For a source
with luminosity L and size l, we have:

• luminosity distance DL: F = L
4πD2

L

• angular diameter distance DA: ϕ = l
DA

Note that DL 6= DA in expanding space!

Comoving distance:
Comoving coordinates move with space as it expands.

χ(tem, tobs) =

∫ tobs

tem

cdt

a(t)

(for light, ds = 0⇒ adχ = cdt)

= χobs
em = c

∫ aobs

aem

da

ȧa
=

c

H0

∫ aobs

aem

da

a2E(a)

(314)

The comoving distance is not measurable through observations, but it is useful theoretically.

71



1. COSMOLOGY

We also define a function that depends on the curvature k of space that is helpful in writing
the metrics:

fk(χ) =



1√
k

sin
(
χ
√
k
)
, k > 0

χ, k = 0

1√
|k|

sinh
(
χ
√
|k|
)
, k < 0

(315)

Angular diameter distance:
The angular diameter distance DA is defined such that

ϕ =
l

DA

(316)

for an object that has angular size ϕ. Then the endpoints of l have the same (χ, θ, t):

l = aemfk
(
χobs

em

)
ϕ

=
1

1 + z
fk
(
χobs

em

)
ϕ

(317)

&obs
em( l

observer
emission

&obs
em

observer

emission

so

DA =
1

1 + z
fk
(
χobs

em

)
. (318)

Luminosity distance:
The luminosity distance DL is defined such that

F =
L

4πD2
L

. (319)

&obs
em( l

observer
emission

&obs
em

observer

emission

Then the observed surface, for aobs = 1, is

4πa2
obsf

2
k

(
χobs

em

)
= 4πfk

(
χobs

em

)
. (320)

Furthermore, we can relate the observed and emitted luminosities

Lobs =
1

(1 + z)2
Lem =

1

(1 + z)2
L

⇒F =
L

4πf 2
k (χemobs) (1 + z)2

=
L

4π [f 2
k (χemobs) (1 + z)]

2

(321)
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so
DL = (1 + z)fk

(
χobs

em

)
. (322)

This also gives us the relation

DA =
1

(1 + z)2
DL (323)

so DA ≈ DL if z � 1.

Notes:
• The simplest Einstein-de Sitter case is:

ΩΛ,0 = Ωκ,0 = Ωr,0 = 0, Ωm,0 = 1

⇒ DA =
2c

H0

1

1 + z

(
1− 1√

1 + z

)
DL =

2c

H0

(1 + z)

(
1− 1√

1 + z

) (324)

For z � 1:

DA ≈ DL ≈
2c

H0

(
1−

(
1− 1

2
z

))
(325)

=
c

H0

z (326)

Furthermore:

χobs
em =

c

H0

∫ aobs

aem

da

a2E(a)
=

c

H0

∫ 1

aem

da

a2E(a)
(327)

(328)

For E(a) ≈ 1 and a ≈ 1− z:

χobs
em ≈

c

H0

1

(1− z)2

∫ 1

aem

da (329)

=
c

H0

1

(1− z)2
(1− a) (330)

≈ c

H0

1

(1− z)2
z (331)

≈ c

H0

z (332)

So we get DA = DL = χobs
em for z � 1, i.e. agreement for low z.

• The general flat case is: k = 0⇒ fk(χ) = χ.

DA =
1

1 + z
χobs

em

=
c

H0

1

1 + z

∫ aobs

aem

da

a2E(a)

=
c

H0

1

1 + z

∫ 1

aem

da

a2E(a)

(333)
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Since a = 1
1+z

and da = − 1
1+z

2
dz, then

DA =
c

H0

1

1 + z

∫ z

0

[Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]−
1
2 dz (334)

So generally for Ωκ,0 = 0 (i.e. flat):

DA =
c

H0

1

1 + z

∫ z

0

[Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]−
1
2 dz (335)

DL =
c

H0

(1 + z)

∫ z

0

[Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0]−
1
2 dz . (336)
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To the left is a plot com-
paring the angular diame-
ter, luminosity, and comov-
ing distances for a flat uni-
verse with Ωm = 0.315 and
H0 = 67.4 km/s/Mpc. By
z ∼ 1, there is a significant
difference between the dis-
tance measures.

Comoving volume element:
We want to measure the number of objects in a given angle dΩ on the sky in a redshift
range (z, z + dz). What is the comoving number density of those objects, i.e. what is the
corresponding comoving volume?

In general:
V = dAdr (337)
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where dA is area and dr is depth. So

dVχ = (DA
2dΩ)︸ ︷︷ ︸

proper area

(1 + z)2

︸ ︷︷ ︸
comoving area

· dχ︸︷︷︸
comoving depth

(338)

Aproper = a2Acomoving (339)

⇒ Acomoving =
1

a2
Aproper = (1 + z)2Aproper (340)

dχ = c
H0

dz
E(z)

, so

dVχ = (DA
2dΩ)(1 + z)2 c

H0

1

E(z)
dz (341)

and finally:

dVχ =
c

H0

(1 + z)2DA
2

E(z)
dΩdz . (342)

Plug in DA = 1
1+z

fκ(χ):

dVχ =
c

H0

f 2
κ(χ)

E(z)
dzdΩ (343)

= f 2
k (χ)rdΩ

dχ

dz
dz . (344)

1.D Inflation

So far, dynamics have been described by the Friedmann equations with some mass-energy
content of the Universe: Ωm,Ωr,Ωk,ΩΛ. Is this sufficient to explain all data?

Problems:

• Horizon problem:
ρr ∝ (1 + z)4 and ρr ∝ T 4 ⇒ T ∝ (1 + z) (345)

The Universe cools and at some zrecomb, it consists of neutral hydrogen atoms (recom-
bination). We get the balancing equation

H+ + e
 H0 + χ (346)

where χ = 13.6 eV is the ionization energy. We also have:

x =
number density of free e−

number density of protons

η =
nb
nγ

=
baryon number density

photon number density
≈ 5× 10−10

(
Ωb,0h

2

0.01

) (347)
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which we use in the Saha equation:

1− x
x2
≈ 3.84η

(
kBT

mec2

)3/2

e
− χ
kBT (348)

With χ = 13.6 eV corresponding to ∼ 105 K (1 eV≈ 104 K), we would expect x < 1 for
T < 105 K. However, there are many more photons than baryons, which leads to x < 1
only for T ≈ 3000 K. This gives zrecomb ≈ 1090 (for Ωb,0 = 0.045, T0 = 2.73 K).

After this time, photons can escape or free stream, and we can observe them as the
Cosmic Microwave Background. The CMB is very uniform: ∆T

T
≤ 10−5 (note that

CMB maps are typically logarithmic).

Why is this a problem?
Horizons are the largest causally connected regions by light rays.

The comoving horizon size is:

ds = 0 (light) =⇒ cdt = a(t)dχ =⇒ χhorizon =

∫ t

0

cdt

a(t)
(349)

So we have

χhorizon(z) =

∫ a=(1+z)−1

0

cda

a2H(a)
. (350)

For a flat radiation dominated universe:

lhorizon = aχhorizon =
c

H(z)
=

c

H0

√
Ωr,0

1

1 + z
(351)

flat matter dominated:

lhorizon = a(

∫ (1+zeg)−1

0

cda

a2H(a)
+

∫ (1+z)−1

(1+zeq)−1

cda

a2H(a)
)︸ ︷︷ ︸

largest contribution comes from matter dominated phase

≈ 2c

H(z)
=

2c

H0

√
Ωm,0

a√
1 + z

=
2c

H0

√
Ωm,0

1

(1 + z)
3
2

(352)

Apply this to zrecomb:

ρr,0(1 + zrecomb)4

ρm,0(1 + zrecomb)3
∼ 5× 10−2 ⇒ matter dominated regime

⇒lhorizon =
2c

H0

Ω
− 1

2
m,0(1 + z)−

3
2

(353)

Angular size of horizon:

ϕhorizon =
lhorizon

DA

DA : Angular diameter distance (354)
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DA =
1

1 + z
fκ(χ

obs
em ) =

1

1 + z
χobs

em (for flat universe)

=
c

1 + z

1

H0

∫ z

0

[
Ωm,0(1 + z)3

]− 1
2 dz

=

(
2c

H0(1 + z)Ωm0
1
2

[
− 1√

1 + z

])z

0

=
2c

H0 (1 + z)︸ ︷︷ ︸
≈z,z�1

Ω
1
2
m0

[
1− 1√

1 + z

]
︸ ︷︷ ︸

≈1,z�1

≈ 2c

H0

1

Ω
1
2
m0z

(355)

This gives us the angular size of the horizon at recombination:

ϕhorizon,recomb ≈
√

1

zrecomb

∼ 1.7◦ (356)

Or more generally:
ϕhorizon,recomb ≈ 1.7◦

√
Ωm,0 . (357)

This is much smaller than the full sky, so how can the CMB be so uniform?

• Flatness problem:
At high z, Λ is irrelevant in the Friedmann equations, so:

H2(a) =
8πG

3
ρ− kc2

a2
= H2(a)

[
Ω(a)− kc2

a2H2(a)

]
, ρ = ρm + ρr (358)

Thus, deviation from flatness Ω(a) = 1 is:

|Ω(a)− 1| = kc2

a2H2(a)
. (359)

Since a ∝ t2/3 in matter dominated times and a ∝ t1/2 during radiation dominated
times, we have:

|Ω(t)− 1| ∝

{
t, radiation dominated

t2/3, matter dominated
(360)

Thus, any small deviation Ω(tearly) 6= 1 at early times quickly blows up! Ω(tearly) must
therefore be very close to 1, which leads to a “fine-tuning problem."

• Monopole problem:
General unified theories predict many magnetic monopoles, but this is not observed.
The number density must decrease.

• Seeds of structure formation problem:
What seeds the perturbations that become the large structures we observe?
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Inflation: basic ideas:

• Flatness problem:

If kc2

a2H2(a)
decreased with time for a short period, then Ω(a)

would be driven towards Ω(a) = 1.

• Horizon problem:
If kc2

a2H2(a)
shrinks, then χ ∝ c

aH(a)
also shrinks.

&obs
em( l

observer
emission

&obs
em

observer

emission

comoving 
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connected region

comoving 
horizon after

V0

V())

))0

reheating

slow roll 
inflation

⇒ can explain smoothness within the observable universe.

So decreasing 1
aH(a)

seems to solve two problems! The conditions for a shrinking comoving
horizon:

d

dt

( c

aH

)
< 0

d

dt

( c
ȧ

)
< 0

−cä
ȧ2

< 0

⇒ ä > 0

(361)

We need some period of accelerated expansion. We can look at the second Friedmann
equation (e.g. for acceleration):

ä

a
= −4πG

3
(ρ+

3p

c2
) +

Λc2

3
(at early times, Λ = 0)

= −4πG

3
(ρ+

3p

c2
)

⇒ p < −ρc
2

3
← we need sufficiently negative pressure

⇒ p

ρc2
< −1

3

(362)

This also solves the monopole and seed problem! Rapid expansion would decrease the density
of monopoles and blow up tiny perturbations. All problems are then solved.
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Note that Λc2

3
actually corresponds to a negative pressure term. To see this more clearly, we

combine both Friedmann equations to derive the energy conservation equation:

d

dt
(ρc2a3) + p

d

dt
(a3) = 0

⇒ ρ̇ = −3H(a)(ρ+
p

c2
)

(363)

And for Λ with ρΛ = constant (= ρ):

ρ+
p

c2
= 0 ⇒ p = −ρc2 (364)

So the equation of state parameter is

w =
p

ρc2
= −1 < −1

3
(365)

where w = −1/3 is needed for accelerated expansion as shown above. Thus, Λ leads to
accelerated expansion and therefore a shrinking comoving horizon. Once Λ dominates in the
Friedmann equation:

H2(a) = H2
0 ΩΛ =

(
ȧ

a

)2

⇒a ∝ e
√

ΩΛH0t

(366)

which is exponential growth.

Inflation:
Λ has all the features we want, but it:

• acts too late

• is constant, i.e. even if it acted early enough, it would not stop inflation!

How do we get all this in the early universe? We look at a homogeneous scalar field (inflation):

L =
1

2
∂µφ∂

µφ− V (φ) (367)

which leads to the energy-momentum tensor:

Tµν = ∂µφ∂νφ− gµνL ⇒
T00 = ρc2 =

1

2
φ̇2 + V (φ)

Tii = p =
1

2
φ̇2 − V (φ)

(368)

To get w < −1/3, we require:

1

2
φ̇− V (φ) < −1

3

(
1

2
φ̇+ V (φ)

)
p < −ρc

2

3

⇒ φ̇2 < V (φ)

(369)
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i.e. the field must be moving slowly during inflation. Thus, the potential should be flat and
have a minimum to stop inflation. Furthermore:

Friedmann equation : H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
Energy conservation : ρ̇ = −3H(a)

(
ρ+

p

c2

)
ρ̇c2 = φ̇φ̈+ φ̇

dV

dφ

with ρ =
1

2
φ̇2 + V (φ) and

p

c2
=

1

2
φ̇− V (φ)

⇒φ̇φ̈+ φ̇
dV

dφ
= −3H(a)

(
1

2
φ̇2 + V (φ)

)
− 3H(a)

(
1

2
φ̇2 − V (φ)

)
⇒φ̈+

dV

dφ
= −3H(a)φ̇

⇒ φ̈+ 3H(a)︸ ︷︷ ︸
Hubble drag

φ̇ = −dV

dφ

(370)
and we get the field evolution equation. In a static universe, H = 0, and there is no Hubble
drag. dV

dφ
is how fast energy is extracted from inflation.

Slow roll conditions:
We approximate

H2 ≈ 8πG

3
V (φ) (371)

which is ≈ V0 and roughly constant during the slow roll, leading to exponential growth. We
also have

3Hφ̇ ≈ −dV

dφ
(with φ̈ ≈ 0) (372)

which is equivalent to:
φ̇2 � V

and

d

dt
φ̇2 � dV

dt
⇒ φ̈� dV

dφ

(373)

This can be rewritten in slow roll parameters:

ε : =
1

24πG

(
V ′

V

)2

� 1

η : =
1

8πG

(
V ′′

V

)
� 1

(374)

As long as these conditions are valid, inflation will go on. The slow roll potential is:

80



1. COSMOLOGY
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inflation During reheating, the in-
flation field decays through
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(“reheat universe").

Since
H2 =

8πG

3
V (φ) ≈ 8πG

3
V0 (375)

during inflation, large values of φ0 and V0 lead to more inflation (longer slow roll).

1.E Basic story of cosmology

Main ingredients:

• metric (geometry)

• Friedmann equations (dynamics)

• distances (connection to observations)

• horizons (evidence for inflation)

Emerging story

a) t = 0: Big Bang

b) t ∼ 10−34 s: inflation

c) T decreases as T ∝ (1 + z)

d) z ≈ 3200: transition from radiation to matter domination

e) z ≈ 1100: recombination

f) Structure formation is nonlinear. First stars and galaxies...

g) z ≈ 0.33: transition from matter to Λ domination
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The first five stages here are optically thick to photons, while later is optically thin and
potentially observable.

2 Structure formation

So far, we have assumed a uniform cosmology. We now add perturbations to study the
growth of structure.

2.A Linear perturbation theory

There are small perturbations at early times. The Universe consists of matter (dark matter
and baryons) and radiation. Λ and curvature are unimportant early on.

Basic equations:

• non-relativistic matter (dark matter, baryons) is important in the matter-dominated
regime:

continuity equation :
∂ρ

∂t
+ ~∇ · (ρ~v) = 0

momentum equation :
∂~v

∂t
+ (~v · ~∇)~v = −

~∇p
ρ

+ ~∇φ

Poisson’s equation: ~∇2φ = 4πGρ

(376)

• relativistic matter (radiation)

continuity equation :
∂ρ

∂t
+ ~∇ ·

(
(ρ+

p

c2
)~v
)

= 0

momentum equation :
∂~v

∂t
+ (~v · ~∇)~v = −

~∇p
ρ+ p

c2

+ ~∇φ

Poisson’s equation: ~∇2φ = 4πG(ρ+
3p

c2
)

(377)
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Notes:

• non-relativistic

– Dark matter follows the collisionless Boltzmann equation; 1st/2nd equations only
hold for moments (Jeans equation).

– For dark matter, there is no well-defined velocity field ~v(~x, t) due to multistream.
~v(~x, t) is just an average.

– Nevertheless, it recovers the correct growth rate for large scales > λJ when pres-
sure can be neglected.

• relativistic

– gravitational source terms include pressure terms.

– For pure radiation: p = ρc2

3
.

This leads to the perturbation equation where some small perturbation δ evolves in a smooth
background density ρ̄:

δ =
∆ρ

ρ̄
=
ρ− ρ̄
ρ̄

. (378)

Perturbation equations:

non-relativistic: δ̈ + 2Hδ̇ =

(
4πGρ̄δ +

v2
s
~∇2δ

a2

)

relativistic: δ̈ + 2Hδ̇ =

(
32

3
πGρ̄δ +

v2
s
~∇2δ

a2

) (379)

where
δ = δ(~x, t)

~x : comoving coordinates
~r : a~x physical coordinates

~∇ =
∂

∂~x

vs =


cs, non-relativistic baryons
σ, non-relativistic dark matter
c√
3
, relativistic radiation

(380)

Fourier representation:
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For comoving coordinate ~x and comoving wave number ~k:

δ(~x, t) =

∫
d3k

(2π)3
δ̂(~k, δ)e−i

~k·~x

δ̂(~k, t) =

∫
d3xδ(~x, t)e+i~k·~x

(381)

and we get

non-relativistic: ¨̂
δ + 2H

˙̂
δ = δ̂

(
4πGρ̄− v2

sk
2

a2

)
relativistic: ¨̂

δ + 2H
˙̂
δ = δ̂

(
32

3
πGρ̄− v2

sk
2

a2

)
.

(382)

Growing modes:
For a static background, H = 0 and:

¨̂
δ + w2

0 δ̂ = 0 (383)

with

w2
0 =


v2
sk

2

a2
− 4πGρ̄, non-relativistic

v2
sk

2

a2
− 32

3
πGρ̄, relativistic

(384)

For physical wave number k̃ = k/a, we get oscillation for:

k̃ ≥ k̃J =


2
√
πGρ̄

vs
, non-relativistic√

32
3

√
πGρ̄

vs
, relativistic

(385)

and growth (no oscillations) for modes with lengths l = 2π
k̃

greater than λJ :

l ≥ λJ =
2π

k̃J
∝ vs√

πGρ̄
(386)

where k̃ = k/a is in physical units. We can make this more general for H 6= 0 and neglecting
the pressure terms for l ≥ λJ and we get:

¨̂
δ + 2H

˙̂
δ = 4πGρ̄δ̂, non-relativistic

¨̂
δ + 2H

˙̂
δ =

32

3
πGρ̄δ̂, relativistic

(387)

Now for Ω = 1, we have the critical density as the background density for the radiation and
matter dominated regime:

ρ̄ = ρcrit =
3H2

8πG
(388)
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such that
¨̂
δ + 2H

˙̂
δ =

3

2
H2δ̂, matter dominated Ω = 1

¨̂
δ + 2H

˙̂
δ = 4H2δ̂, radiation dominated Ω = 1

(389)

Now:

H =
ȧ

a
=


2

3t
, matter dominated

1

2t
, radiation dominated

(390)

We now assume δ̂(~k, t) ∝ tn. Then:

n2 +
n

3
− 2

3
= 0, matter dominated

n2 − 1 = 0, radiation dominated
(391)

⇒
n = −1,

2

3
, matter dominated

n = −1,+1, radiation dominated
(392)

that correspond to negative decaying modes, which are unimportant since the perturbations
vanish, and positive growing modes. This gives us:

δ̂ ∝

{
a, matter dominated
a2, radiation dominated

(393)

In general, we write δ = Dδ0 or δ̂ = Dδ̂0 whereD is the growth factor such thatD(z = 0) = 1.

Growth of baryons vs. cold dark matter:
Growth of perturbations occurs for λ > λJ or M > MJ = 4

3
πρ̄λ3

J .
Baryons:

• Until recombination, there is strong coupling between photons and electrons.

• Before recombination
c2
s =

∂p

∂ρ
, p =

1

3
ρc2, (radiation)

⇒cs =
c√
3
.

(394)

• After recombination

c2
s =

∂p

∂ρ
, p =

ρ

mkT
, T = 2.71 K(1 + z), (ideal gas)

⇒cs =

√
kT

m
≈ 5 km/s

(395)
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• So
z � 1100 : MJ ≥ 1016 M�

z < 1100 : MJ . 105 M�
(396)

since after recombination, the photon pressure support is removed.

• Structure can only form after z ∼ 1000.

• if structure can only grow from z ∼ 1000, δ will be amplified by ∼ 103 (since matter
dominated growth is ∝ a). BUT: the CMB has δ ∼ 10−5 and 10−5×103 ∼ 10−2 today,
which is much less than what we observe in the low redshift universe. This theory of
structure growth is not sufficient.

• Solution: dark matter must have clumped before and baryons fall into dark matter
wells.

Cold dark matter:

• CDM is very cold, so it has a tiny velocity dispersion σ. This means that MJ is tiny
and collapse on all scales is possible.

• CDM does not interact with radiation, so it can grow before recombination.

Cold dark matter is needed to make structure formation work!

2.B Growth of linear perturbations

Full general relativity treatment can be used to study growth beyond the horizon scale.
Modes outside the horizon can always grow (no causal contact):

δ ∝

{
a ∝ t2/3, matter dominated
a2 ∝ t, radiation dominated

(397)

Once a mode enters the horizon, its growth changes (note that we have perturbations on
different length scales).
Baryons:
Baryons have a finite Jeans length before recombination:

λJ =
c√
Gρ̄

√
π

3
, (cs =

c√
3

) (398)

so modes with l < λJ have no growth. However, this is only if l is also within the horizon.

The growth of the physical horizon is (for Ω = 1):

lhorizon = a

∫ t

0

cdt

a(t)
=

{
2ct, radiation dominated; a ∝ t1/2

3ct, matter dominated; a ∝ t2/3

=


c√
Gρ̄

√
3

8π
, radiation dominated

c√
Gρ̄

√
3

2π
, matter dominated

(399)
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where we used
H2 =

8πGρ

3
(for ρ = ρcrit =

3H2

8πG
)

=


1

4t2
, radiation

4

at2
, matter

(400)

lhorizon < λJ : as soon as mode length l enters the horizon, it will oscillate! So before
recombination, perturbations can grow if l > lhorizon, otherwise they will oscillate.
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The horizon and Jeans mass grow as we have seen before: MJ ∼ 1016M� at z ∼ 1000, so all
modes smaller than 1016M� entered the horizon before recombination and therefore start to
oscillate and stop growing.

There is also another problem for those modes: Silk damping! Before decoupling, photons
do not free stream because of Thomson scattering off free electrons. The mean free path
gets large towards recombination. So:

- M < MJ ∼ 1016M� perturbations oscillate due to photon pressure.

- Photons can diffuse out of potential wells and take baryons with them (electrons
through Thomson scattering and protons through Coulomb interactions), which erases
perturbations.

The net effect is that all perturbations ∼ 1012M� (Silk mass) are damped and erased!

Cold dark matter:
Cold dark matter has essentially zero Jeans mass, so all modes can already grow. However,
for subhorizon modes in the radiation dominated epoch, δ ∼constant (stagnation). Because
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the expansion rate is higher than the growth rate, we get:

expansion timescale: τHubble ≈
1√
Gρr

collapse timescale: τJeans ≈
1√
Gρm

(401)

and τHubble � τJeans if ρr � ρm. So modes entering the horizon during the radiation dom-
inated phase are frozen (but not damped through something like Silk damping). After
recombination, baryons can fall into CDM wells and grow.
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A mode that enters the horizon at thor after matter-radiation equality at teq will always
grow. Modes that enter the horizon during the radiation dominated regime will stagnate
until matter domination.

Cold dark matter is then the main driver of structure formation since it there is time for CDM
perturbations to grow large enough. Without CDM, structure formation is not possible.

2.C Statistical measures of structure

We see structure on different scales. We can use the power spectrum P (k) to describe this.
Reminder:

δ(~x) =

∫
d3k

(2π)3
δ̂(~k)e−i

~k·~x

δ̂(~k) =

∫
d3xδ(~x)e+i~k·~x

(402)

Variance and the power spectrum:
average:

〈δ〉 =

∫
d3xδ(~x) = 0 (403)

variance:
σ2 =

〈
δ2
〉
− 〈δ〉2 =

〈
δ2
〉
> 0〈

δ2
〉

=

∫
d3xδ2(~x) =

∫
d3k

(2π)3
|δ̂(~k)|2

(404)
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If we assume homogeneity and isotropy, ~k → k = |~k| and d3~k = 4πk2dk. Then we get:

σ2 =
1

2π2

∫
|δ̂(k)|2k2dk

=:
1

2π2

∫
P (k)k2dk

with P (k) = |δ̂(k)|2

(405)

Notes:

• P (k) and σ are functions of time since δ̂(k) grows (σ = Dσ0).

• The initial power spectrum is the primordial power spectrum set at the end of inflation.
The general form is

P (k) = Akn (406)
which is a power law and is scale-free. According to predictions from inflation, n ≈ 1.

Measuring P (k) and galaxy clustering:
If we assume galaxies trace the mass perturbations, what is the probability dP that we find
two galaxies in volumes dV1 and dV2 at a distance r from each other?

dP = n0(1 + δ(~x))dV1 · n0(1 + δ(~x+ ~r))dV2

= n2
0(1 + δ(~x)︸︷︷︸

=0

+ δ(~x+ ~r)︸ ︷︷ ︸
=0

+δ(~x)δ(~x+ ~r))dV1dV2

= n2
0(1 + ξ(r))dV1dV2

(407)

where δ(~x) and δ(~x + ~r) are zero on average and ~r → r due to isotropy. ξ is the two-point
correlation function and is related to P (k):

ξ(r) =

∫
d3~xδ(~x)δ(~x+ ~r)

=

∫
d3~x

∫
d3k

(2π)3
δ̂(~k)e−i

~k·~x
∫

d3k′

(2π)3
δ̂(~k′)e−i

~k′·(~x+~r)︸ ︷︷ ︸∫
d3k′
(2π)3

δ̂(~k′)e+i~k′·(~x+~r) (δ real)

=

(
1

(2π)3

)2 ∫
d3~x

∫ ∫
d3k d3k′ δ̂(~k)δ̂(~k′)e−i(

~k−~k′)·~xe−i
~k~r

using
1

(2π)3

∫
d3xei(

~k−~k′)·~x = δ(~k − ~k′)

=
1

(2π)3

∫
|δ̂(~k)|2ei~k·~rd3k

=
1

(2π)3

∫
|δ̂(k)|2ei~k·~rd3k where ~k → k from isotropy

=
1

(2π)3

∫
P (k)ei

~k·~rd3k

⇒ ξ(r) =
1

(2π)3

∫
P (k)ei

~k·~rd3k .

(408)

89



2. STRUCTURE FORMATION

Observationally:

ξ(r) ≈
(
r

r0

)−1.8

(409)

with r0 ≈ 5 h−1 Mpc for galaxies. Different objects have a different r0, and more massive
objects are more clustered, e.g. the cluster-cluster correlation function differs from the
galaxy-galaxy correlation function: ξcc ≈ 20ξgg.

2.D Form of the primordial power spectrum

There is no scale in the power spectrum P (k) = Akn. We want to know what n and A are.
Initially, fluctuations on different scales should have the same amplitude on different scales.

Power spectrum index:
Fluctuations on certain mass or length scales are (0 is large scale, kmax is the smallest scale):

σ2 ≈
∫ kmax

0

P (k)k2dk

=

∫ kmax

0

Akn+2dk ∝ kn+3
max

⇒ σ ∝ k
1
2

(n+3)
max or σ ∝ k

1
2

(n+3)

(410)

For mass, we get:
M ∝ R3 ∝ k−3 ⇒ k ∝M−1/3

⇒ σ ∝M− 1
6

(n+3)
(411)

So:

σ ∝

{
k

1
2

(n+3)

M− 1
6

(n+3)
(412)

Does this tell us something about n? Modes can always grow outside the horizon, but we
do not want “special" modes. All modes should therefore have the same σ, i.e. the same
strength/fluctuation amplitude, when they enter the horizon.

The horizon mass, i.e. the mass within the horizon, is:

Mh ∝ ρmr
3
h

ρm ∝ (1 + z)3 (413)

and

rh ∝

{
a2 = (1 + z)−2, radiation dominated

a3/2 = (1 + z)−3/2, matter dominated

⇒Mh ∝

{
(1 + zh)

−3, radiation dominated

(1 + zh)
−3/2, matter dominated

(414)

90



2. STRUCTURE FORMATION

σ grows:
σ ∝ δ

σ ∝

{
a2 = (1 + z)−2, radiation dominated

a3/2 = (1 + z)−1, matter dominated
(415)

We now find σ of the horizon mass, i.e. the fluctuation strength once this mode enters.

• radiation dominated case:

σ(zh) = σ(zp)

(
1 + zp
1 + zh

)2

∝ σ(zp)(1 + zh)
−2 (416)

where zh is the redshift once mass M is within the horizon, and zp is the redshift at
the end of inflation. Then

σ(zp) ∝M− 1
6

(n+3)

Mh = M ∝ (1 + zh)
−3 ⇒ (1 + zh)

−2 ∝M2/3
(417)

so we find:
σ(zh) ∝M− 1

6
(n+3)M2/3 = M−( 1

2
+n−4

6
) (418)

• matter dominated case
This follows the same calculation, so we get the same result and the fluctuation of a
mode once it enters the horizon is:

σ(zh) ∝M−( 1
2

+n−4
6

) (419)

Now, we do not want “special" modes, so σ(zh) should not depend on n! We get n ≈ 1
according to the Harrison-Zel’dovich spectrum.

Power spectrum amplitude:
n can be calculated with theory from inflation, but the amplitude comes from observations.
We measure the number of fluctuations in galaxy surveys within a sphere of 8 Mpc/h, or σ8.
The fluctuations in galaxies are not exactly the fluctuations in mass:

σ8,gal = bσ8,mass (420)

where b is the bias of the galaxy clustering compared to the mass fluctuations. Observation-
ally, σ8,gal ≈ 1. From WMAP and SDSS, we have:

n = 0.953± 0.016

σ8 = 0.756± 0.035
(421)

Transfer function:
We found that modes entering the horizon during the radiation dominated phase do not grow
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(stagnation). The primordial power spectrum is therefore modified by the transfer function:

P0(k) = (Ak)T 2(k),

T (K) ≈


1,

1

k
� L0

1

k2
,

1

k
� L0

(422)

where L0 is the comoving horizon at zequality.

2.E Nonlinear evolution: spherical collapse

For δ � 1, we can use linear perturbation theory, but for δ ∼ 1, nonlinear evolution begins
and halos form. This requires simulations.

Halos:

• A distribution of dark matter as a collection of nearly spherical overdense clouds to
form halos.

• We study the dynamics of spherical, homogeneous overdensities for a basic understand-
ing. This is the spherical collapse model.

Spherical collapse model:
We consider an overdense sphere in an Einstein-de Sitter cosmology. The overdensity will
eventually reach a maximum radius and then collapse to a virialized halo because the gravity
within the overdensity is stronger.

P0(k)

k0=1/L0 k

a
R

H = H0a
−3/2 Friedmann equation for Einsten-de Sitter

x =
a

ata

ata is the scale factor at maximum expansion

y =
R

Rta

radius in units of maximum radius

(423)

We can simplify:

τ = Htat (with Hta = H0a
−3/2
ta )

⇒ x′ =
dx

dτ
=

1

Hta

ȧ

ata

=
H

Hta

x = x−1/2

(using
H

Hta

=
H0a

−3/2

H0a
−3/2
ta

=
a−3/2

a
−3/2
ta

= x−3/2 for the final equality)

(424)

So
x′ = x−1/2 (425)
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We use the Newtonian equation of motion for the radius R:

R̈ = −GM
R2

= − 4π

3
ρtaR

3
ta︸ ︷︷ ︸ GR2

enclosed mass stays the same
(426)

We can rewrite this:
ρta =

3H2
ta

8πG
ξ (427)

where ξ is the overdensity parameter, which is the overdensity of the halo with respect to
the background at turnaround (ξ > 1 for overdensities). Then using τ and y, we have:

y′′ = − ξ

2y2
(428)

with the boundary conditions
y′|x=1 = 0

y|x=0 = 0
(429)

and we can solve the equations:
x′ = x−1/2

y′′ = − 3

2y2

(430)

Then we get an implicit solution for x:

x′ = x−1/2 ⇒ τ =
2

3
x3/2 (431)

So
x =

(
3

2

)
τ 2/3

dx

dt
=

2

3

(
3

2

)2/3

τ−1/3 = x−1/2

(432)

We also have

y′ = ±
√
ξ

√
1

y
− 1 (433)

using the first boundary condition. We also use the + before turnaround and the − after.
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Then
dy′

dτ
= ±

√
ξy′

d

dy

((
1

y
− 1

)1/2
)

= ±
√
ξy′

1

2

(
1

y
− 1

)−1/2

(−y−2)

= − ξ

2y2

(
± 1√

ξ
y′
(

1

y
− 1

)−1/2
)

= − ξ

2y2

(
y′
(
±
√
ξ

√
1

y
− 1

))−1

︸ ︷︷ ︸
=1

(434)

Integrating before turnaround and using the second boundary condition gives us an implicit
solution for y:

τ =
1√
ξ

(
1

2
arcsin(2y − 1)−

√
y − y2 +

π

4

)
. (435)

At turnaround:
x = 1 = y, τ =

2

3

⇒ 2

3
=

1√
ξ

1

2
arcsin(1)︸ ︷︷ ︸

π/2

+
π

4

 =
1√
ξ

π

2

⇒ ξ =

(
3π

4

)2

(436)

so we get the overdensity parameter ξ.

At collapse:
We assume symmetry, so we get collapse at τ = 4

3
. Then

xc =

(
3

2

)2/3

τ 2/3 =

(
3

2

)2/3(
4

3

)2/3

= 41/3 (437)

Collapse parameters:

• Linearly extrapolated values:
at early times, y � 1, so

τ ≈ 8

9π
y3/2

(
1 +

3y

10

)
. (438)

The overdensity inside the halo relative to the background is:

∆ =

(
x

y

)
ξ. (439)
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Note here that ξ is the overdensity at turnaround, and we want to find ∆ at collapse.
The background density is proportional to x−3, and the halo density is proportional to
y−3. We also know that x = y = 1 at turnaround, where ∆ = ξ. Now

τ =
2

3
x3/2 ⇒

(
2

3

)
x3/2 ≈ 8

9π
y3/2

(
1 +

3y

10

)
⇒
(
x

y

)3/2

=
3

2

8

9π

(
1 +

3y

10

)
⇒
(
x

y

)3

=

(
4

3π

)2

︸ ︷︷ ︸
=1/ξ

(
1 +

3y

10

)2

︸ ︷︷ ︸
≈(1+ 3y

5 )

⇒∆ =

(
x

y

)3

ξ = 1 +
3y

5

(440)

linear density contrast (assuming y � 1):

δ = ∆− 1 =
3y

5
(441)

– The linearly extrapolated density contrast at turnaround is:

δta =
ata

a
δ =

δ

x
=

3y

5x
(442)

since linear perturbations δ grow like the scale factor. Now

1

x
=

(
3τ

2

)−2/3

≈
(

3π

4

)2/3
1

y
(443)

using the lowest order in y. We can then insert this into δta and get:

δta =
3

5

(
3π

4

)2/3

≈ 1.06 (444)

– The linearly extrapolated density contrast at collapse is:

δc =
ac
ata

δta = xcδta = 41/3δra =
3

5

(
3π

2

)2/3

≈ 1.69 (445)

So the halo can be considered collapsed when its density contrast expected from lineary
theory has reached δc. If we draw a density field as a function of one-dimensional space,
we can identify which overdensities will collapse at a given time:

P0(k)

k0=1/L0 k

a
R

time
'c

x

'(x)

'c

collapsing overdensities

x

'(x)
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• Nonlinear values:
We now look at the potential energy of a halo:

at turnaround: E = Vta (no kinetic energy)

at collapse: E = Tc + Vc =
1

2
Vc (virial theorem: 2Tc + Vc = 0)

⇒Vra = E =
1

2
Vc ⇒ Vc = 2Vta

(446)

Since potential energy is proportional to 1
r
and y = 1 at turnaround, we know that

y = 1
2
at virialization. Then we get the overdensity at this time:

∆V =

(
xc
y

)3

ξ =

(
41/3

1
2

)3

ξ = 32ξ = 32

(
3π

4

)2

= 18π2 ≈ 178 (447)

A halo in virial equilibrium is expected to have a mean density of ∼ 178 higher than
the background. This is why masses and radii of halos are often quoted as M200, which
is the mass enclosed in a sphere of radius R200 with an average density 200 times the
mean or critical density of the Universe.

2.F Press-Schechter mass function

We want to know the halo mass function, i.e. the number density of a given mass of halos
at a given redshift.

Analytic derivation:
We consider a halo of mass M . The characteristic length scale is then R(M) = R:

4π

3
R3ρc(z)Ωm(z) = M

⇒R(M) =

(
3M

4πρc(z)Ωm(z)

)1/3 (448)

Halos of mass M are then forming if the smoothed density field δ̄ crosses δc = 1.69:

δ̄(~x) =

∫
d3yδ(~x)WR(|~x− ~y|) (449)

where WR is the window function.

The variance on the scale R(M) is:

σ2
R =

1

2π

∫ ∞
0

k2dkP (k)ŴR(k) . (450)

Inflation produces a Gaussian random field, so the probability of finding a smoothed density
contrast δ̄(~x) at a given point in space ~x is:

p(δ̄(~x), z) =
1√

2πσ2
R(z)

e
− δ̄2(~x)

2σ2
R

(z) (451)
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where σR(z) is the linearly evolved σR : σR(z) = σRD(z) for growth factor D.

The Press-Schechter idea is that the probability of finding the filtered density contrast at
or above the linear density contrast for spherical collapse, δ̄ > δc, is equal to the fraction of
volume filled with halos of mass M :

F (M, z) =

∫ ∞
δc

dδ̄p(δ̄, z) =
1

2
erfc

(
δc√

2σR(z)

)
. (452)

The distribution of halos over mass M is simply ∂F (M,z)
∂M

. To calculate this, we need:

∂

∂M
− dσR(z)

dM

∂

∂σR(z)
=
dσR
dM

∂

∂σR
. (453)

Using d
dx

erfc(x) = − 2√
π
e−x

2 , we get:

∂F (M, z)

∂M
=

dσR
dM

∂

∂σR

(
1

2
erfc

(
δc√

2D(z)σR

))
=

dσR
dM

1

2

(
− δc√

2D(z)σ2
R

)(
− 2√

π
e
− δ2c

2σ2
R
D2(z)

)

=
dσR
dM

δc√
2πσ2

RD(z)
e
− δ2c

2σ2
R
D2(z)

=
1√
2π

δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

(454)

so

∂F (M, z)

∂M
dM = fraction of volume filled with halos of mass [M,M + dM ]. (455)

We must convert ∂F
∂M

to an actual halo mass function. We convert to comoving number
density by dividing by the mean volume M/ρc(z)ΩM(z) occupied by mass M halos:

∂F (M, z)

∂M
=

1√
2π

ρc(z)ΩM(z)δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

1

M
(456)

However, we need a fudge factor for the mass function to work. We require∫ 1

0

dM
∂F (M, z)

∂M
= 1 (457)

since ∂F
∂M

is a volume fraction. But we get 1
2
using ∂F (M,z)

∂M
above! We therefore add a factor

of two:

N(M, z) =

√
2

π

ρc(z)ΩM(z)δc
σRD(z)

d ln(σR)

dM
e
− δ2c

2σ2
R
D2(z)

1

M
. (458)
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See Problem Set 6 for a description of the Extended Press-Schechter formalism that explains
the fudge factor.

Here we show the mass
function for several theoret-
ical models from Press and
Schechter 1973, Sheth, Mo,
and Tormen 2002, Jenk-
ins et al. 2002, and Tin-
ker et al. 2008. The
lines are fairly similar, al-
though the Press-Schechter
deviates slightly more from
the other models.
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Part III

CMB, BBN, and Thermal History of the
Universe
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1. THE COSMIC MICROWAVE BACKGROUND

So far, we have mostly discussed the late-time evolution of the Universe (except inflation).
We now study the early phases.

1 The Cosmic Microwave Background

1.A Basic picture of the CMB

At z ∼ 1000, photons decouple from matter (previously coupled due to Thomson scattering).
At that time, the dark matter has already formed dark matter potential wells, which leads
to perturbations in baryons. This leads to temperature fluctuations in the CMB δT

T
∼ 10−5

(note: without dark matter, we would expect δT
T
∼ 10−3). This leads to anisotropies in the

CMB.

Primary anisotropies:
These are anisotropies caused by properties of the CMB.

• Large scales:

–

P0(k)

k0=1/L0 k

a
R

time
'c

x

'(x)

'c

collapsing overdensities

x

'(x)

ˠ Dark matter potential wells lead to gravitational redshift
and gravitational time delay. Photons were scattered
earlier (and then delayed), so they were higher temper-
ature.

Both effects (gravitational redshift and time delay) always happen together. This
is the Sachs-Wolfe effect.

– Doppler effect due to the peculiar motion of electrons.

• On scales larger than the horizon, baryons follow dark matter, leading to higher tem-
peratures in dark matter wells.

• On scales smaller than the horizon, baryons feel radiation pressure. This leads to
baryonic acoustic oscillations (BAO).

• On very small scales, the imperfect coupling between photons and electrons leads to
diffusion. Fluctuations are smeared out and damped on scales ≤ 5′. This is called Silk
damping.

Secondary anisotropies:
These impact the measurements of the CMB due to effects on photons as the travel from
the CMB to us.

• Thomson scattering of CMB photons: the Universe was reionized by the first stars,
galaxies, and quasars between z ∼ 1000 and z ∼ 6. These photons then experience
Thomson scattering with free electrons as they travel through space. The scattering is
isotropic, so it results in an overall reduction of CMB anisotropies.
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1. THE COSMIC MICROWAVE BACKGROUND

• Integrated Sachs-Wolfe effect: photons experience gravitational potential and time
delays as they travel through structures in the Universe.

• Gravitational lensing from structures in the Universe.

•
Sunyaev-Zel’dovich (SZ) effect: CMB photons passing
through the hot intergalactic medium of galaxies Thom-
son scatter with electrons. This reduces the intensity for
lower frequencies and increases the intensity for large
frequencies, resulting in a shift in the spectrum.
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1.B Describing anisotropies and the fluctuation spectrum:

We focus now on understanding the primary anisotropies. We have three main effects:

• Large scales: Sachs-Wolfe and Doppler effects roughly compensate each other. The
photons then provide an imprint of the dark matter distribution.

• Smaller scales: Baryonic acoustic oscillations of the photon-baryon plasma.

• Smallest scales: Silk damping due to photon diffusion.

We need to quantify the temperature fluctuations on the sky. We decompose the fluctuations
into spherical harmonics:

T (~θ) =
∑
l,m

almY
m
l (~θ) (459)

where ~θ = (θ, ϕ) and alm are the complex coefficients

alm =

∫ 2π

0

dϕ

∫ π

0

dθ sin θT (θ, ϕ)Y m∗
l1

(θ, φ) (460)

since ∫ 2π

0

dϕ

∫ π

0

dθ sin θY m1
l1
∗(θ, ϕ)Y m2

l2
(θ, ϕ) = δl1l2δm1m2 . (461)

We define the power spectrum:
Cl =

〈
|alm|2

〉
(462)

averaging over m. We often plot l(l + 1)Cl and define this as the amplitude of fluctuations
on the angular scale θ ∼ π

l
= 180◦

l
. l = 1 is the dipole anisotropy due to the motion of Earth

and l = 2 is the quadrupole anisotropy.

Fluctuations on large scales:
At z = zrec ∼ 1000, there is a characteristic scale the horizon with angle:

ϕhorizon,rec ≈ 1.7◦
√

Ωm,0 (463)
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so for a flat universe: ϕhorizon,rec ≈ 1.7◦. Then for θ � 1.7◦, large-scale effects dominate
(Sachs-Wolfe and Doppler) and there are no baryonic acoustic oscillations. Then Cl re-
flect the matter power spectrum P (k) on large scales. For P (k) ∝ k (Harrison-Zel’dovich
spectrum), l(l + 1)Cl is approximately constant for l� 180◦

1.7◦
≈ 100.

Fluctuations on small scales:
For θ � 1.7◦, physical effects can act.

The baryon-photon fluid has a sound speed of cs ≈ c/
√

3. Then the
largest wavelengths such that the wave can have half an oscillation
(compression) until zrec, trec is:

λmax = treccs = trec
c√
3
. (464)
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The sound horizon is 1√
3
times smaller than the horizon. The angular scale is then

θ1 ≈
1.7◦√

3
∼ 1◦

l1 ≈ 200

(465)

so we can expect the first peak in l(l + 1)Cl there since baryons are compressed. Adiabatic
compression and the Doppler effect lead to temperature fluctuations on that scale.

The second peak occurs for scales for which one full oscillation is possible and so forth:
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Peaks happen at stationary points of oscillations. We can draw the power spectrum:
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1.C Cosmology with the CMB

We can derive the cosmological parameters
Ωk,Ωm, and Ωb from the first and second
peaks of the power spectrum.

• Derive Ωk from the first peak:
The actual extent of the first peak does not strongly depend on Ωk, but the angular
scale/angular diameter distance is sensitive to Ωk.

In an open universe, the angular size of the sound horizon
will appear smaller, and the first peak will move to larger l.
In a closed universe, it will appear larger, so l will be lower
for the first peak.

l

l(l+1)cl

Ωm

Ωk

Ωb

flat

closedopen

sound 
horizon

Ω1
Ω2

a

t1

t2

low 
baryons high 

baryons

• Derive Ωm from the first peak:
A naive assumption might lead us to believe that more matter means more gravity and
so bigger peaks. However, the timing effect is more important!

Consider two values of Ωm (Ω1 > Ω2). For larger Ωm, the universe is younger for a
given redshift (e.g., zrec).
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Figure 1: [Fig. 57 of Planck Collaboration V. 2020, A&A, 641, A5] Planck 2018 temperature power spectrum. At multipoles
` ≥ 30 we show the frequency-coadded temperature spectrum computed from the Plik cross-half-mission likelihood, with
foreground and other nuisance parameters fixed to a best fit assuming the base-ΛCDM cosmology. In the multipole range
2 ≤ ` ≤ 29, we plot the power-spectrum estimates from the Commander component-separation algorithm, computed over 86% of
the sky (see Sect. 2.1.1). The base-ΛCDM theoretical spectrum best fit to the likelihoods is plotted in light blue in the upper
panel. Residuals with respect to this model are shown in the middle panel. The vertical scale changes at ` = 30, where the
horizontal axis switches from logarithmic to linear. The error bars show ±1σ diagonal uncertainties, including cosmic variance
(approximated as Gaussian) and not including uncertainties in the foreground model at ` ≥ 30. The 1σ region in the middle
panel corresponds to the errors of the unbinned data points (which are in grey). Bottom panel : difference between the 2015
and 2018 coadded high-multipole spectra (green points). The 1σ region corresponds to the binned data errors. The vertical
scale differs from the one of the middle panel. The trend seen for ` < 300 corresponds to the change in the dust correction
model described in Sect. 3.3.2.
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2. THERMAL HISTORY OF THE UNIVERSE
l
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Ω1 > Ω2 leads to t1 < t2, so there’s not as much
time to form structures and we get a smaller peak!

Note: based on the first peak, we get Ωm and Ωk, so also ΩΛ (assuming flat universe)!

• Derive Ωb from the second peak:
Ωb is degenerate with Ωm, so we need the second peak. This can also be derived from
Big Bang nucleosynthesis.

The idea is that a higher baryon mass is like adding mass to a spring (“baryon loading").
More mass causes a deeper fall:

l
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With more loading, the mass falls deeper but rebounds to the same position. Thus,
odd peaks are associated with compression—i.e., how deep the baryons fall into the
well. Those peaks get enhanced with more baryons, so the second peak is compressed
compared to the first peak. We can therefore constrain Ωb with the ratio of the two
peaks.

2 Thermal history of the Universe

The main idea is that the Universe was very hot in the beginning since T ∝ (1 + z). For
a particle with mass mx and temperature such that kT & mxc

2, we have creation and
annihilation reactions. Once T falls low enough, we get freeze-out and the reactions stop,
freezing the abundance of those particles. (Note: 1eV = 1.1605×104 kBK⇒ 1eV↔ 104 K.)
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2. THERMAL HISTORY OF THE UNIVERSE

We first discuss in some more depth the freeze-out of dark matter, which happens around
10−100GeV. We then briefly discuss the remaining thermal history for temperatures below
∼ 16 GeV (standard model physics). Big Bang nucleosynthesis will be discussed in the next
chapter.

2.A Thermal history of dark matter

Where does dark matter come from? At early times (T > 1012 K ∼= 100 GeV), we have
kT ≥ mxc

2 for leading dak matter candidates. For non-relativistic particles in equilibrium:

neq = g

(
mkT

2π~2

)3/2

e−
mc2

kT . (466)

We have equilibrium between creation and annihilation:

x+ x̄� 2γ . (467)

For creation rate ψ and annihilation rate n2〈σv〉, where 〈σv〉 is the velocity averaged cross
section for annihilation, we have:

= n2
eq〈σv〉 . (468)

At late times, kT falls below mc2, so e−mc2/kT → 0. If annihilation continues to happen,
no particles will be left since new particles cannot be created at low temperatures, which
would leave no relic abundance. However, the annihilation rate n2〈σv〉 also goes down since
n ∝ a−3. If there’s no creation or annihilation:

comoving:
dnc
dt

= 0

(
nc = n

(
a

a0

)−3
)

dn

dt
= −3

ȧ

a
n

⇒dn

dt
+ 3Hn = 0

(469)

Thus, annihilation will stop and then there will be a relic abundance. The abundance
equations with reactions is:

dnc
dt

= −〈σv〉
(
n2
c − n2

c,eq

)
(470)

so the reactions drive nc towards the equilibrium value.

There are two competing timescales: the expansion of the Universe and the mean interaction
timescale. We can rewrite the above equation:

dnc
da

da

dt︸︷︷︸
ȧ

= −〈σv〉n2
c,eq

[(
nc
nc,eq

)2

− 1

]
(
H =

ȧ

a

)
a

nc,eq

dnc
da

= −〈σv〉nc,eq

H

[(
nc
nc,eq

)2

− 1

]
.

(471)
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There are two timescales in this equation: τ = 1/H and τcoll = 1/(neq〈σv〉). Then

a

nc,eq

dnc
da

= − τH
τcoll

[(
nc
nc,eq

)2

− 1

]
. (472)

We have two regimes that give us two solutions:

• At early times, τcoll � τH ⇒ nc ≈ nc,eq.

• At late times, τcoll � τh ⇒ nc ≈ constant ≈ nc,eq(zfreeze).

At redshift zfreeze, we have τcoll ∼ τH , so particles freeze out of equilibrium and the comoving
number density stays fixed.

From observed relic abundances, we get m and σ at the electroweak scale, which is predicted
for WIMPs! This is known as the WIMP miracle. So far, however, nothing has been detected.

Hot and cold dark matter:
Are particles moving relativistically (hot dark matter) or non-relativistically (cold dark mat-
ter) at freeze-out? Particles become non-relativistic when:

3kT (tnr) ≈ mc2 . (473)

There are two cases:

• tnr > tfreeze ⇒ hot relic and hot dark matter

• tnr < tfreeze ⇒ cold relic and cold dark matter

Hot dark matter:
Consider an analogy to the Jeans length, the free-streaming length:

λ = v

√
π

Gρ
. (474)
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This wipes out structures on small scales! Since v ≈ c, scales below the horizon are sup-
pressed. But particles slow down due to expansion:

vpec = v −Hd⇒ v ∝ a−1 (475)

and the particle becomes non-relativistic once mc2 ∼ 3kT (relic time and temperature), so:

t ∼ 2× 1012s

(
mc2

2 keV

)−2

lh ∼ cth ∼ 60 Mpc

(
mc2

3 keV

)−1
(476)

so hot dark matter erases all structures below lh due to free-streaming.

Cold dark matter:
Cold dark matter is already non-relativistic at freeze-out, so structures can grow. It still has
some free-streaming scale, but it is much smaller.

nc

nc,eq

freeze-out

increasing 
 <σv>

relic 
abundance

time 
1/T

P(k)

primordial 
∝k

∝k-3  
for CDM

HDM

impact of 
transfer function T(k)

Hot dark matter would not be captured by small
potential wells, so it needs large potential wells to
form structures. This leads to top-down structure
formation, where large large structures form first
and fragment into smaller structures. Cold dark
matter can form small halos that merge into larger
ones in bottom-up formation.

2.B Thermal history of the Universe and other particles

• T ∼ 1019 GeV, t ∼ 10−43 s:
quantum gravity regime

• T ∼ 1016 GeV, t ∼ 10−38 s:
GUT phase transition: strong and electroweak interactions are indistinguishable at
earlier times
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• T ∼ 1012 GeV, t ∼ 10−30 s:
Peccei-Quinn phase transition, if PQ mechanism is the correct explanation for the
strong CP problem

• T ∼ 10s− 100s GeV, t ∼ 10−8 s:
WIMPs freeze out

• T ∼ 100− 300s MeV, t ∼ 10−5 s:
quark-hadron phase transition: quarks and gluons first become bound into neurons
and protons

• T ∼ 0.1 MeV − 10 MeV, t ∼ seconds−minutes:
Big Bang nucleosynthesis (BBN): neutrons and protons first combine to form D, 4He,
3He, and 7Li nuclei

• T ∼ keV, t ∼ 1 day:
photons fall out of equilibrium, and the number density of photons is conserved

• T ∼ 3 eV, t ∼ 104−5 yrs:
matter-radiation equality: energy density is dominated by photons at earlier times

• T ∼ eV, t ∼ 400, 000 yrs: electrons and protons combine to form hydrogen

• T ∼ 10−3 eV, t ∼ 109 yrs:
first stars and galaxies form

• T ∼ 10−4 eV, t ∼ 1010 yrs:
today

3 Big Bang nucleosynthesis

Once protons and neutrons become available, they can fuse into elements. This allows
detailed predictions about the abundance of the first stars.

Proton/neutron reactions:
After n, p production from the gluon-gluon plasma:

n+ νe � p+ e−

n+ e+ � p+ ν̄e
(477)

with weak interactions mediated by neutrinos and

neq = g

(
mkT

2π~

)3/2

e−
mc2

kT . (478)

Protons and neutrons have gn = gp = 2, so

nn
np

=

(
mn

mp

)3/2

e−
(mm−mp)c2

kT . (479)
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So before freeze-out of the above reactions, we have:
nn
np
≈ e−

1.29 MeV
kT . (480)

Weak interactions stop once neutrinos freeze out, T ∼ 0.8 MeV, t ∼ 1 s:
nn
np
≈ e−1.29/0.8 ≈ 0.2 , (481)

a 5-to-1 ratio. Now nucleosynthesis starts.

Deuteron fusion:
We have the strong reaction:

p+ n� D + γ (482)

with the binding energy of deuteron approximately 2.22 MeV. At the time of neutrino freeze-
out, the temperature is already smaller than 2.22 MeV, but there are so many more photons
than baryons. The high energy tail of photons is still sufficient to destroy deuteron, so we
need kBT � 2.22 MeV to efficiently form deuteron! (The deuteron fusion bottleneck means
that 4He fusion afterwards is quick.)

The time delay needed for the temperature to drop below 2.22 MeV causes neutrons to decay
through β-decay before they can fuse to deuteron. Without fusion to deuteron, all neutrons
would be gone!

Note: If we assume the deuteron fusion is instantaneous, what helium/baryon mass fraction
(Y ) would we get?
All neutrons would fuse into 4He:

• think of a group of 12 nucleons: 10p+ 2n (5:1 ratio, see above)

• all neutrons fuse into 4He, so we get one 4He atom and eight free protons

•
⇒ Y =

4

4 + 8
=

4

12
≈ 0.33 (483)

but we observe 0.24, which is lower due to β-decay.

We now do the precise calculation:

• p + n � D + γ never freezes out. It stops once all neutrons are used up. We can use
the Saha equation to find the abundance:

nD
npnn

=
gD
gpgn

(
mD

mpmn

)3/2(
kT

2π~2

)−3/2

e
2.22 MeV

kT (484)

where gp = gn = 2 (2 spin configurations) and gD = 3 (3 spin configurations: ↑↑, ↓↓, ↑↓).
We also know mp = mn = mD/2, so:

nD
npnn

= 6

(
mnkT

π~2

)−3/2

e
2.22 MeV

kT (485)
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• Protons always outnumber neutrons, so define the time of deuteron fusion is the time
when half the neutrons have fused into deuteron: nD = nn. Then from the Saha
equation:

nD
nn

= 1 = 6np

(
mnkT

π~2

)−3/2

e
2.22 MeV

kT (486)

We now want to know when this happens. We can relate np to the temperature to
calculate the corresponding temperature and time. We can relate np to nb, which we
can relate to nγ through the fixed baryon-to-photon ratio η.

nb = np + nn =
6

5
np (487)

since nn = 0.2np = 1
5
np. Then, for a black-body,

np
nb

=
5

6
⇒ np =

5

6
ηnγ =

5

6
η

(
0.24

(
kT

~c

)3
)

(488)

so we get:

1 = 6
5

6
η

(
kT

~c

)3

· 0.24

(
mnkT

π~2

)−3/2

e
2.22 MeV

kT

=
0.24 · 5

1.25
η

(
(kT )2

)~c)2

π~2

mnkT

)3/2

e
2.22 MeV

kT

= η π3/2 · 1.25︸ ︷︷ ︸( kT

mnc2

)3/2

e
2.22 MeV

kT

5.5 · 1.25 = 6.9

≈ 6.9η

(
kT

mnc2

)3/2

e
2.22 MeV

kT

(fiducial η ∼ 5× 10−10)

≈ 3.4× 10−9

(
kT

mnc2

)3/2

e
2.22 MeV

kT

(489)

So we get
T ≈ 8× 108 K, t ≈ 200 s (490)

for the time of deuteron fusion!

• We lose neutrons through β-decay with a half-life t1/2 = 890 s. After 200 s,

nn
np
≈ 0.15 < 0.2 (491)

so we get a helium-to-baryon ratio:

Y =
4nHe

4nHe + nH

=
2nn

2nn + (np − nn)
=

2nn
np + nn

(492)
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since nHe = nn/2 (every 4He nucleus has 2n) and nH = np − nn (since 4He nucleus has
equal number of protons and neutrons), leaving us with

Y =
2(nn/np)

1 + (nn/np)
≈ 0.25 (493)

Notes:

• Large Ωb leads to larger η, so deuteron can form earlier and there is less neutron decay.
This leads to a larger nn/np, so Y increases with Ωb.

• Measurements of 4He and D allow us to determine η and Ωb. Deuteron abundance is
a sensitive measure for Ωb, and can be found with the Lyman-α forest relating line
strength of H and D.
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1. THE LYMAN-α FOREST

So far, we have gone through the basic concepts of the early universe, galaxies, and structure
formation. We have built the basis to discuss some more advanced topics.

1 The Lyman-α forest

1.A Basics

The Lyman-α forest is the absorption spectrum of quasars. Quasars are very bright from
accretion onto supermassive black holes so can be observed out to very high redshifts. They
can therefore probe gas between the quasar and us along the line of sight through their
absorption lines.

The quasar emits at 1216 Å from the hydrogen n = 2 to n = 1 transition. This emission
line is redshifted as it travels through space. The light also passes through neutral hydrogen
clouds, which absorb at 1216 Å, and these absorption lines are also redshifted as the light
continues to travel through space. By the time the light reaches Earth, there is a series
of absorption lines redshifted from 1216 Å, so the absorption lines are observed at different
wavelengths.

By observing quasar spectra passing through the intergalactic medium (IGM), we can use
the Lyman-α forest to probe the density, ionization, temperature, chemistry, and structure
of the IGM. Below are a few examples of quasar spectra. At higher redshift, there are more
opportunities for the light to pass through neutral hydrogen clouds.
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Notes:

• Identify lines in general through doublets: µ0II (λ = 2795Å, 2802Å...)

• Lyman-α forest is only visible if it extends to shorter wavelengths than the observed
Lyα emission line at (1 + zem)1216 Å. Photons emitted with 1216Å(1 + zem < λ) <
1216Å will have at some point along the line of sight the right rest frame wavelength
(1216Å) to be absorbed.

• There are three cases for HI along the line of sight

– column density NH . 1017 cm−2 gives narrow lines, i.e. the forest

– column density NH & 1017 cm−2 are Lyman-limit systems, i.e. photons with
λ . 912Å = 13.6eV in the rest frame are completely absorbed as the light moves
through the cloud

– column density NH & 1032 cm−2 are damped Ly-α systems, i.e. absorption lines
become very broad.

The Gunn-Peterson Test:
We can use quasar absorption spectra as a hint about reionization and determining how
baryons are distributed in the universe and in which state. The key idea is that neutral
hydrogen along the line of sight leads to absorption, so if there is a significant amount of
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neutral hydrogen then a quasar spectrum should be totally absorbed. When the redshift is
high enough so that the hydrogen is almost all neutral, the high-wavelength region of the
spectrum will be almost totally absorbed. This is called the Gunn-Peterson trough.

What is observed?

For z & 6 we see suppres-
sion due to lots of neutral
hydrogen along the line of
sight.

For z . 6, we see little sup-
pression due to little neu-
tral hydrogen along the line
of sight.

This implies that hydrogen above z ≈ 6 is mostly neutral and mostly ionized below z ≈ 6.
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1.B A quantitative approach to Lyman-α

We now look in more detail at the absorption process:

F (λobs) = F (λem(1 + z))e−τ (494)

where τ is the optical depth, which we need to calculate.

Photons en route through a neutral HI cloud hit atoms in the ground
state which then transition to an excited state (n = 1→ 2, n = 1→
2, ...n = 1 → ionized). Each transition has a frequency dependent
cross-section. The atoms then settle back to the ground state and
a photon is emitted in some other direction within the solid angle
4π.

From atomic physics, we know that

σ(ν) =
πe2

mec
fφ(ν − ν0) (495)

where f is the oscillator strength (i.e. the probability for absorption) and φ is the Voigt
profile with

∫
φdν = 1. For the Lyman-α transition, σ(ν) = 10−2 cm2φ(ν − ν0) with units

cm2Hz−1.

The proper length dl can be related to redshift (taking only the magnitude and ignoring
signs):

dl = cdt = c
da

ȧ
=
c

a

da

ȧ/a
=
c

a

da

H
= (1 + z)c

da

H
(496)

and since a = 1/(1 + z) then da
dz

= 1/(1 + z)2 so

dl =
1

1 + z
c

dz

H(z)
=

cdz

(1 + z)H(z)
(497)

giving

dl =
cdz

(1 + z)H(z)
= c

(
H0(1 + z)

√
ΩM,0(1 + z)3 + ΩΛ

)−1

dz . (498)
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For the matter dominated regime (z & 1), we get

dl =
cdz

H0

√
ΩM,0(1 + z)

5
2

. (499)

Then the optical depth is

τν = σ0
c

H0Ω
1
2
M,0

∫ z

0

dz′
nHI(z

′)

(1 + z′)
5
2

φ(ν(1 + z′)− ν0) (500)

and we can assume that φ, which has a Gaussian shape, is very narrow so is approximately
a delta function

≈ σ0
c

H0Ω
1
2
M,0

∫ z

0

dz′
nHI(z

′)

(1 + z′)
5
2

δ(ν(1 + z′)− ν0)

= σ0
nHI(z)

H0Ω
1
2
M,0

c

ν0

1

(1 + z)
3
2

(501)

and using λ0 = c
ν0
, we get

τν(z) = σ0
nHI(z)λ0

H0Ω
1
2
M,0(1 + z)

3
2

(502)

where σ0 = 10−2 cm2 and z is the redshift when λ(1+z) = λ0, i.e. when absorption happens.
This gives the optical depth for one frequency, so is necessary to evaluate at many frequencies
to get the optical depth for different parts of a spectrum.
As an example, we can evaluate τν(z = 3) assuming hydrogen is uniformly distributed and
neutral. Using

H0 = 70 km/s/Mpc = 2.3× 10−18 s−1

nHI =
ρcritΩb,0

mH

(1 + z)3 ∼ 10−5 cm−3

(
1 + z

4

)3

≈ 10−5 cm−3 at z = 3

λ0 = 1216 Å
σ0 = 10−2 cm2

(503)

we get τLyα ∼ 105, but we observe that τ ∼ 1.

There are a couple possible solutions to this discrepancy. It could be that gas isn’t in
intergalactic space. However, we know that this is not the case since we have observed it.
The other option is that the gas isn’t neutral. To bring τLyα(z = 3) down to ∼ 1, we need
to have the neutral hydrogen fraction XHI ≡ nHI

nH
∼ 10−5.

Ionization:
How does the hydrogen get ionized?
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Ionization can occur in hot temperatures. We can estimate the temperature from absorption
line widths:

∆v ∼ 20 km/s

1

2
mv2 ∼ kT

⇒20 km/s ∼
√

2kT

m

⇒T ∼ 30, 000 K ∼ 3eV

(504)

which is not enough to ionize hydrogen.

Another option is photoionization. Integrated light from galaxies and quasars emits Γ ∼
10−12 ionizing photons per second. The ionization rate is then ΓnHI, and the ionization
timescale is

nHI

nHIΓ
∼ 1012 s ∼ 30, 000 yr (505)

We can compare this with the recombination rate RnHIIne where R = 4.3× 10−13
(

T
104 K

)−0.7

which gives the recombination timescale

nHII

RnenHII

∼ 2× 1017 s ∼ 3× 106 yr (506)

so recombination is much slower than ionization and photoionization is plausible.

To establish the predicted ionization fraction, we find equilibrium by setting the ionization
and recombination timescales equal:

RnHIIne = ΓnHI (507)

and assume that nHII ∼ ne ∼ nH and nHI � nHII so

Rn2
H = XHInHΓ (508)

which gives a neutral fraction of

XHI ≈
RnH

Γ
∼ 5× 10−6 . (509)

So at the present day, the ionization fraction is very small. However, it took a while between
recombination and the present day for ionizing sources to form and begin emitting radiation
to ionize the neutral gas. Once they formed, the gas was ionized over a period of time.
Before recombination, the gas was mostly ionized in the hot universe. Exactly how and when
reionization occurred is an active area of research that is being probed by both telescopes
like HERA and simulations like THESAN.
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