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Summary

We can help. The objectives of this appendix are to observe and then model the time it takes a
gravity-driven outflow to drain a tank. The observations come from a family of experiments that explore
the effects of two real-fluid properties of water, surface tension and viscosity. Surface tension may slow
the outflow as the fluid height becomes small, and in some cases stop it altogether. When a pipe is
present, viscous drag will reduce the outflow by a factor that depends upon the fluid viscosity, the
diameter and length of the pipe, d and L, and the height of the surface, h.

The goal of this appendix is to demonstrate dimensional analysis as a guide for organizing this
multi-parameter dataset into a concise and interpretable form. A clear organization of the data facilitates
comparison with model predictions and highlights specific errors. This leads to a sequence of improved
models. The end result is a model that is mostly understandable while providing reliable solutions for
the parameter space of the present experiments.

How long to drain this tank?

Here to learn Earth’s ways.

All I see are water tanks —

deeper than they seem?

Planetary Explorer contemplating a water tank.
By the author using ChatGPT-5.
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1 Draining a tank; objectives and goal

”How long to drain this tank?” comes up in a wide range of contexts. Tank-draining projects are a

mainstay of physics education, where they combine accessible experiments with satisfying theory.1

Tank-draining problems continue to be a research topic in nuclear and chemical engineering when

they include complex plumbing and highly exotic fluids.2

Though simple in concept, tank-draining problems do not admit simple solutions except in the

most idealized case in which the fluid is considered to be ideal. This study goes beyond the basic

case by including two real-fluid properties of water, surface tension and viscosity. Modeling these

phenomena, the objective of this appendix, requires experimental observations and theory combined

in roughly equal measure. The deeper goal of this appendix is to show how dimensional analysis can

be the essential link between observations and a theory.

Readers are assumed to have some experience with applied mathematics including linear algebra

and ordinary differential equations, and classical mechanics to include a first look at fluid mechanics.

This article is meant to be suitable for self-study.

1.1 Why and how dimensional analysis

The procedure of dimensional analysis followed here is outlined briefly below and in considerably

greater detail in the main text, Dimensional Analysis of Models and Data Sets.3 If dimensional

analysis strikes you as abstract in the extreme — as it does for everyone who is new to the idea —

then Secs. 1 - 3 of the main text are strongly recommended as a prerequisite to this appendix. If you

are somewhat familiar with dimensional analysis as it is usually practiced via the Buckingham Pi

Theorem, then you will find that the present method is different mainly by the approach to 3) and 4)

below.

1. Problem definition. A problem is defined by a so-called Variables and Parameters list, or

VPlist, that starts with one dependent variable, the unknown, and includes all of the other

variables and parameters that would necessarily appear in a model of the phenomenon. A

1 Donnelly, S. C., et al., 2024, Draining a tank through multiple orifices: An improved lab experiment in

fluid mechanics, https://doi.org/10.18260/1-2-660-46367, and Rother, M. A., 2024, Modelling tank drainage

using a simple apparatus. Journal of Mathematical Education in Science and Technology. 55, 2, 295 - 307.

https://doi.org/10.1080/0020739X.2023.2249472 .

2 Elgamal, M., K. Kriaa and M. Farouk, 2021, Drainage of a Water Tank with Pipe Outlet Loaded by a Passive Rotor. Wa-

ter, 2021, 13, 872 https://doi.org/10.3390/w13131872

3 Online at https://ocw.mit.edu/courses/res-12-001-topics-in-fluid-dynamics-fall-2024/
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remarkable property of dimensional analysis is that you do not have to know the model in any

further detail; though better of course, if you do. These variables and parameters are

characterized by the powers (the exponents) on their fundamental dimensions, [mass length

time]. For example, the dimensions of a pipe having length, L, will be indicated by a

dot-equals notation, e.g., L
.
= [ 0 1 0 ], a speed V = dL/dt has dimensions

V
.
= [ 0 1 − 1 ], and an acceleration has dimensions dV/dt

.
= [ 0 1 − 2 ]. The powers of

each member of the VPlist (the three-element row vectors above) are collected into a dimension

matrix.

2. The practical advantages of dimensional analysis. If the VPlist is complete, then the

dependent variable may be written in a nondimensional form that is free from reference to a

system of units, e.g., meters, centimeters or feet, and so is a pure number. There are two

significant advantages in this that will be highlighted as we go through this analysis. First, a

description in nondimensional variables is more concise (has fewer variables) than is the

equivalent dimensional description. Second, a nondimensional description helps focus attention

on meaningful relationships. For example, a pipe may be judged to be long or short compared

to the pipe diameter, a natural scale with physical significance, or in meters or centimeters,

arbitrary scales. The latter system is likely to be most useful during the design and execution of

an experiment, while the use of nondimensional variables will maximize the utility of the

experimental results.

3. Automated calculation of nondimensional variables. The nondimensional variables may be

computed by solving a system of linear equations for the null space of the dimension matrix.

The solution vectors of the null space correspond one-to-one with nondimensional variables.

This calculation is not difficult, but can be tedious if done by hand. The calculation is quick

and sure when automated; links to Matlab and Python codes are in Sec. 8.

4. Interpretation. The system of equations is most often undetermined, i.e., more unknowns than

independent equations. In that case the initial basis set is not unique, and it will be optimal

only by chance. Your task will be to transform (as necessary) the initial basis set into a form

that will enhance the utility and interpretation of the analysis. Examples of this transformation

will be seen throughout.
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Planetary Explorer beginning a long trek.

Image by the author using ChatGPT-5.

Seeking a better model.

A long path ahead.

Starlit by the Milky Way,

I’ll take slow, sure steps.

1.2 Model development guided by observations and dimensional analysis

The model development described here takes place in five steps, Fig. 1, each one motivated by a

comparison of model predictions with a suite of experimental observations. Dimensional analysis is a

great help in organizing the observations, and so guiding the next step in the model development.

There are two ideals for the model — sufficient transparency that we can understand what the

model is and what it does, and, that the model predictions be true to the observations. These are not

easily achieved at once. In the progression of models shown in Fig. 1, Model 4 is transparent and

understandable but makes a consistent overestimate of the outflow transport. Model 5 utilizes

historical, empirical turbulent pipe flow correlations to modify the viscous drag calculated by Model

4. This largely corrects the overestimation errors, but with some loss of transparency. The intent here

is to be deliberate and clear about these tradeoffs.

Sec. 2. The next section describes the experiments and the resulting data that are essential to this

study. The present family of experiments is defined by a four-dimensional parameter space — orifice

or pipe diameter, pipe length, fluid height, and fluid viscosity. The aim of this study is not to answer

any one specific tank-draining problem, helpful as that might be, but rather to model and understand

the entire family of experiments defined by the available apparatus.

Sec. 3. The first experiments are made without a pipe, or orifice-only. The observed surface height,

h(t) is almost parabolic in time, and is described well by the most elementary model, Model 1, until

h becomes very small. The observed outflow then slows and may stop altogether before the tank
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Figure 1: The sequence of models developed here, starting from very simple at the top to fairly complex
at the bottom. A narrative of this model progression is in Sec. 1.2. There are at first two tracks that treat
two distinct physical properties of real water. The track at left deals with surface tension, and the track
at right deals with viscous effects. Surface tension and viscosity are treated separately until brought to-
gether in Model 4. The final Model 5 implements an empirical correction for the greater wall stress that
occurs at larger Reynolds number consistent with the occurrence of turbulent flow. The red text in a box
notes a salient shortcoming.
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drains completely. In some respects this is a small detail, but it is also a qualitative error that is

inherent to the ideal fluid model implicit in Model 1. How can we improve on this?

Sec. 4. At small values of h the orifice may be blocked by a stationary bubble or cap of fluid.

From appearance alone this suggests an effect of surface tension, treated briefly in Sec. 4, and

implemented as Model 2.

Sec. 5. The emphasis of this study is on the viscous drag that accompanies outflow through a pipe.

Dimensional analysis is used to organize observations in a way that reveals the systematic and large

amplitude variation of the outflow transport with pipe length, pipe diameter, viscosity and surface

height. This empirical relationship is the objective of later Models 4 and 5.

Sec. 6.1 Poiseuille’s historically significant and still quite useful model of fully-developed, viscous,

laminar pipe flow is taken as Model 3. It shows promise for cases with longer pipes and greater

viscous drag. However, it diverges toward unrealistic, excessive transport for cases with lesser drag

because it takes no account of the inertial acceleration that has to accompany the movement of fluid

from the tank into and through the orifice.

Sec. 6.2 A hybrid Model 4 combines Poiseuille’s solution with the inertial orifice flow of Model 1

and surface tension of Model 2. A surprising result is that the solution of Model 4 can be written as

a function of one nondimensional independent variable where dimensional analysis had indicated two

independent variables. The collapsed, one variable description leads to a more insightful diagnosis of

the advective/diffusive balance within the laminar flow regime. Model 4 gives a reasonable,

semiquantitative account of the observations overall, however it displays a systematic overestimate of

transport (underestimates viscous drag) for cases with larger Reynolds numbers.

Sec. 7 The inference made from this observation is that the flow is turbulent at the larger Reynolds

numbers reached in these experiments. Modeling turbulent flow relies on historical data correlations.

The resulting Model 5 is adequate to these data, but at some cost in transparency, i.e., Model 5 is not

understandable to the depth of Model 4.

1.3 Glossary of symbols, phrases and models

• Symbols

– C orifice discharge coefficient; for this apparatus, C ≈ 0.77, nondimensional

– d inside diameter of the orifice and the pipe

– D diameter of the cylindrical water tank

– F is an unknown function

– g acceleration of gravity, 9.8 m s−2 and presumed constant
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– h height of the water surface above the orifice/pipe center

– Q observed volume transport of the outflow, m3 s−1

– µ dynamic viscosity, for water, nominal 0.9 ×10−3 Pa s, temperature dependent

– ν = µ/ρ kinematic viscosity, for water, nominal 0.9 ×10−6 m2 s−1

– νe equivalent viscosity that mimics the enhanced wall stress of turbulent flow

– r radius of the orifice or pipe = d/2

– ρ the density of fresh water, 998 kg m−3 and presumed constant

– σ surface tension, for water, nominal 75 × 10−3 N m−1, or 75 × 10−3 kg s−2

– W volume of fluid in the tank, m3

–
.
= ’dot equals’ is an operator that brings out the exponents on [ mass, length, time ], e.g.,

W
.
= [ 0 3 0 ] and Q = − dW/dt =

.
= [ 0 3 -1 ].

• Derived Symbols and Phrases

– a = π d2 / 4, area of the orifice and pipe

– A = π D2 / 4, area of the tank

– E = (L/d)Re−1
x = (Lν)/ d2

√
2 g h

– hσ = σ /(ρ g r), equivalent hydrostatic head of the surface tension-induced pressure

– Va = Q /a, area-averaged velocity of the outflow, known only if Q is known

– VT =
√

2 g h, Torricelli velocity, considered external when h is a known,

independent variable

– Re = Va d /ν, the most commonly encountered version of a pipe Reynolds number

– Rex = VT d /ν, the external Reynolds number used frequently here

– basis set of nondimensional variables, calculated by the codes linked in Sec. 8.

– entry length, the distance downstream from the orifice over which the flow becomes

independent of distance, also said to be fully-developed

– hydrostatic head, the height of a fluid at rest that gives a specific pressure

– laminar flow implies a steady, one-dimensional velocity throughout the pipe, and a simple

relationship between frictional drag and transport

– turbulent flow implies unsteady, three-dimensional, and dispersive velocity, with one

consequence being greater drag than in an otherwise comparable laminar flow

– VPlist, variables and parameters in a list that defines a problem.

• Glossary of Models
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– Model 0, Q0, a zero-order model of orifice transport, Q0 = a VT , Eq. (11)

– Q1 the elementary model of orifice transport, Q1 = C Q0, Eq. (14)

– Q2 as Q1 including surface tension, Q2 = Q1

√

1 − hσ /h, Eq. (22)

– Q3 Poiseuille’s solution for viscous, laminar flow through a pipe, Eq. (35)

– Q4 a solvable, hybrid model that includes Q1, Q2 and Q3, Eq. (40)

– Q′

4 Model 4, but with a prime indicating no surface tension, implicitly via Eq. (41)

– Q5 as Q4 with a correction for turbulent flow, Eq. (56)

– Q′

5 as Q5 but omits surface tension.

2 A family of experiments

This study is built around a dataset generated during a series of low-tech, tabletop experiments that

can be readily reproduced and extended. The tank was a polypropylene, semi-transparent laboratory

beaker into which holes of known diameter, orifices, were drilled carefully a few centimeters above

the bottom. For most experiments, there was a polypropylene tube connected directly to the orifice

(very much like the cover page illustration) and kept horizontal. The length of this ’pipe’ could be

easily cut down, including to effectively zero. The fluid was ordinary tap water, whose viscosity, µ,

and surface tension, σ, are well-known functions of temperature.

2.1 Parameter space of this apparatus

The immediate aim of the experiments was to document the time to drain (or more generally the

draining rate) over the accessible range of the independent parameters that define this family of

experiments:

• orifice or pipe diameter, 3 ≤ d ≤ 6.5 mm,

• pipe length, 0 ≤ L ≤ 1.5 m,

• fluid viscosity, 0.6 × 10−3 ≤ µ ≤ 1.5 × 10−3 Pa s, depending upon water temperature,

• surface height, 0 ≤ h ≤ 0.15 m.

Other relevant parameters that were not varied in these experiments:

• σ = 75 ×10−3 N m−1, surface tension of fresh water at room temperature,

• D = 0.185 m, the tank diameter,

• g = 9.8 m s−2, acceleration of gravity, and
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• ρ = 998 kg m−3, the nominal density of fresh water.

This apparatus is intermediate in scale — it is much larger than the scales of biological,

capillary flows, and it is much smaller than the scales of a continent-spanning natural gas pipeline.

The resulting flows may be characterized as low speed, low energy, and mostly laminar. However, in

the higher range of Reynolds numbers accessed here there are fairly clear signs of weakly turbulent

flow discussed in Sec. 7.

2.2 Making observations

Experiments began by filling the beaker with water having a measured temperature ranging from very

hot to almost freezing. Once the fluid had settled (observed with dye), the orifice or pipe was

uncovered, and the water allowed to drain freely. The beaker had a volumetric scale, and the elapsed

time was recorded as the surface descended by discrete intervals of volume, Wi = ( 4.5, 4.0, 3.5 ...

0.5 ) × 10−3 m3, and thus the direct observation was of Wi at about 8 - 12 times, ti. Most

experiments were complete within twenty minutes. The surface height in meters referenced to the

orifice center (where W = W0) is easily calculated by

hi = (Wi(t) − W0)/A, (1)

where A = πD2/4 is the surface area of the tank. A closely related variable is the outflow volume

transport, Q, estimated by first-differencing the discrete, observed volumes and times,

Qi ≈ − Wi+1 −Wi

ti+1 − ti
. (2)

The sign convention ensures that the estimated outflow Q > 0, to aid visualization. The h that goes

along with (2) is the midpoint average h̄i = (hi+1 + hi)/2, and similarly for the time. From here

on the subscripts and accents are dropped, and h, t and Q are treated as if continuous.

The measurements were found to be nearly repeatable, with random errors in the time estimated

to be no more than 2 seconds. These small errors do not accumulate during the course of an

experiment, and may be suppressed by a three-point smoothing of the observed times (applied in only

a few cases). The largest source of systematic error comes from defining the inside diameter of the

tube, d. For each tube, the diameter was measured by feeler gauges and often found to be slightly

different, by as much as 0.1 mm, from the diameter indicated by the manufacturer (not a problem for

the orifice diameter, which is well-controlled). Uncertainty in d is magnified by the sensitive

dependence upon d that characterizes several aspects of tank-draining, e.g., outflow transport Q ∝ d2.

The net uncertainty on any one estimate of Q is roughly ±10% of the magnitude.

These measurements were neither highly resolved nor highly precise. That is less than ideal, of
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Figure 2: Surface height, h(t), from
three orifice-only experiments that had
different orifice diameters, the red, green
and blue dots. The trajectories h(t) are
very nearly parabolic, a rapid decrease
at the beginning that markedly slows as
h decreases. These experiments show
that a modest increase in orifice diam-
eter resulted in a substantially faster
decrease of the surface height. Notice
that the surface height stops descending
short of zero. The dashed blue line is the
ideal fluid Model 1 solution for the case
d = 3.0 mm. Model 1 ignores surface
tension and so this solution drains to
zero. The solid lines are computed by
Model 2 which acknowledges surface
tension (coming in Sec. 4).

course, but it is not disqualifying because the case-to-case variation with changing parameters is

considerably greater than are the random or systematic errors that compromise the value of any one

realization. Thus, we can with some confidence explore and seek to model the parameter dependence

of h and Q, over the family of experiments. Dimensional analysis is especially useful in this context.

2.3 Inferences from the first experiments

The first set of experiments used room temperature water, T = 20 ◦C , and no pipe (orifice-only) and

so L was effectively zero. The orifice diameter was d = 3, 4.5 or 6.5 mm. The surface height h(t),

here regarded as the dependent variable, decreased smoothly in time, Fig. 2. Notice that the variation

of h with d — the signal we are after — is considerably greater than are the likely experimental

errors noted above.

After several trials with dimensional analysis, it became evident that the usual tank-draining

problem — How long to drain this tank? — was best approached indirectly.

The first issue is that in some experiments the tank never actually drained in the strong sense

h → 0. At the beginning of an experiment, when h was largest, the outflow makes a continuous

stream, or jet, of water that traces out what appears to be a ballistic trajectory. As h becomes small,

less than a few centimeters, the outflow may slow significantly and then stop when h was still

roughly 1 cm above the center of the orifice. The fluid then forms an outward protruding cap or

bubble that is evidently held in place by surface tension and adhesion to the beaker. Surface

dynamics of this kind is central to many small scale fluid problems and is discussed briefly in Sec. 4.



2 A FAMILY OF EXPERIMENTS 12

A second issue is that a response to the original problem (how long?) implies the construction of

a model relationship for the time-dependent height, h(t), and its dependence on the variables and

parameters that define an experiment. Consider the simplest possible version of this: draining an ideal

fluid (zero surface tension and zero viscosity) through an orifice (zero pipe length). In Sec. 3.1 below

we will examine a very simple and effective model for this problem. But suppose we do not know

the model — we can still make progress via dimensional analysis provided only that we can compile

a list of the variables and parameters that would appear in an appropriate model.

• A VPlist for the surface height of an ideal fluid draining through an orifice:

1. surface height, h
.
= [ 0 1 0 ], the dependent variable,

2. time, t
.
= [ 0 0 1 ], an independent variable,

3. initial height, h0

.
= [ 0 1 0 ], a parameter,

4. diameter of the orifice, d
.
= [ 0 1 0 ], a parameter,

5. diameter of the tank, D
.
= [ 0 1 0 ], a parameter,

6. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter.

If this list is indeed complete, then we can assert that there is, in principle, a relationship

h = F (t, h0, d, D, g). (3)

The function F is unknown, and it is, of course, crucial. Experimental data are required to show

what F might be.

Now consider the nondimensional counterpart of (3). This VPlist has six members having two

fundamental units, length and time. Our rule-of-thumb guidance to the number of required

nondimensional variables (discussed in the main text, Sec. 3) indicates that a basis set for this VPlist

(notice that it is not the basis set) will contain six minus two = four nondimensional variables. As

one possibility, the nondimensional version of (3) could be

h

h0

= F (t
√

g/h0,
d

D
,
h0

D
). (4)

The Eq. (4) recycles the symbol F to represent an unknown function. The dependent variable is h in

units that are natural to the problem, h0.4 Similarly, the orifice diameter d is in units of the tank

diameter, D, and time is measured by the time required to free-fall a distance h0 while accelerating at

g. In place of five dimensional variables in the F of Eq. (3), there are just three nondimensional

variables in the F of (4). That is a very useful, practical result from dimensional analysis.

4One could just as well say that h is measured by, divided by, scaled by, or nondimensionalized by h0.
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Dealing with three independent nondimensional variables is certainly possible (many real-life

problems are far more extensive), and yet (4) seems unduly cumbersome given how straightforward

and spare this problem appears to be. It will often happen that the first try at a VPlist will have a

broader scope than is desirable for the problem at hand — in this case, slow outflow due mainly to

the property that d � D. How can we change the problem and the VPlist to reflect that

qualification?

2.4 Changing the problem

The surface height, h, is very important in what follows. Nevertheless, h may not be the best choice

for the dependent variable. The reason, shown below, is that a model of h(t) necessarily requires the

time, t, and the tank diameter, D, as parameters.

Suppose instead that we seek a model of the volume transport, Q, of the outflowing water, Eq.

(2). A key modeling assumption appropriate to this new problem is that Q depends only (or mainly)

upon local conditions, and specifically the pressure difference across the orifice. As a corollary of

this, the beaker diameter is large enough compared to the orifice that the beaker may be viewed as an

infinite reservoir of water that is effectively at rest. D will then have a negligible effect upon the

volume transport, though it will remain an essential parameter in any model that seeks to compute the

time to drain, as in (4). Since d << D, the flow within the tank is very slow compared to the

outflow velocity, and the acceleration of the water in the tank is negligible compared to g. The

pressure P (z) within the beaker is then given accurately by the hydrostatic pressure,

∂P

∂z
= − ρ g, (5)

and so

P (z) = ρ g (h − z) + Patm, (6)

where z is the vertical coordinate positive up and zero at the orifice, and ρ is the constant density of

the fluid.5 Patm is the ambient, atmospheric pressure which varies insignificantly over the depth of

the tank. The pressure difference across the orifice is, provisionally, just

δPorf = ρ g h, (7)

the hydrostatic pressure inside the tank at the depth of the orifice. The important variable of (7) is h;

g and ρ are necessary to have the units of pressure, but are global constants in this family of

experiments.

5To here this is the usual, elementary tank-draining problem. An advanced treatment is by D’Alessio, S., 2021, Torricelli’s

law revisited. European J. of Physics, 42 065808.
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• A VPlist for the pressure-driven volume outflow of an ideal fluid through an orifice:

1. outflow volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

2. surface height above the orifice, h
.
= [ 0 1 0 ], the independent variable,

3. diameter of the orifice, d
.
= [ 0 1 0 ], a parameter,

4. acceleration of gravity, g
.
= [ 0 1 -2 ], a parameter,

5. density of the fluid, ρ
.
= [ 1 -3 0 ], a parameter.

A quick calculation of a null space basis from this VPlist leads to

Q

d2
√

g h
= F (

h

d
), (8)

which has only one independent, nondimensional variable: this represents major progress from Eq.

(4).

2.5 Problems

• In Sec. 2.4 the tank-draining problem was changed from modeling h(t) to modeling Q(h).

How and why did this change the status of the variable h?

• What dimensional variables or parameters have gone missing from Eq. (8) compared with Eq.

(4), and on what basis?

3 An elementary (and very successful) Model 1

3.1 Torricelli velocity and a zero-order model

Eq. (8) could be used as is, but it is helpful to modify it superficially by introducing two O(1)

numerical factors,
Q

π
4
d2

√
2 g h

= F (
h

d
). (9)

A factor π/4 multiplies d2 to give the area of the orifice,

a =
π

4
d2.

A factor
√

2 multiplies
√

g h. The latter follows from the conservation of energy of a particle falling

a distance h under gravity and acquiring kinetic energy ∝ V 2/2 = g h. The velocity of an
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energy-conserving free fall is then

VT =
√

2 g h (10)

dubbed the Torricelli velocity.6

The product of VT and the area of the orifice makes a sensible, physically-based natural scale for

the outflow transport,

Q0 = a VT = a
√

2 g h (11)

In the main text this sort of thing was called a zero-order model, here shortened to Model 0 and for

the transport, Q0. If h is regarded as a known, independent variable, then Q0 is known. This Q0 will

be used throughout this study to nondimensionalize Q, and e.g., Eq. (9) becomes

Q

Q0

= F (
h

d
). (12)

A key, implicit assumption of (12) is that the geometric properties of the tank are represented by the

single nondimensional variable h /d. In the orifice-only cases, the actual (dimensional) transport Q

comes close to Q0 so that F (h/d) is just slightly less than 1. In other cases, especially those

involving long and narrow pipes that will be treated in Sec. 4, Q is much less than Q0 and so

F (h/d) � 1.

Summary to here: The objective of the

Experimental observations is to document Q along with the relevant fluid and tank parameters.

Dimensional Analysis is to provide an efficient framework for analyzing the observations.

Modeling is to understand and reproduce the function F of relations like (12).

3.2 A data-driven Model 1

Here is the first example of this procedure — we know all of the individual terms of (12), including

Q from the observations of Fig. 2 and Eq. (2). What we do not know is the function F , and

dimensional analysis alone can not tell us anything more. To find out what F looks like, evaluate

(12) by plotting the nondimensional transport Q/Q0 against h/d, Fig. 3, left.

It appears that F (h/d) exhibits two regimes.

6 Evangelista Torricelli, 1608 - 1647, was a student and then a close associate of Galileo Galilei. His experimental investiga-

tions on a draining tank showed that the outflowing jet described a ballistic trajectory like that of a solid particle. Torricelli’s

research on vacuum and barometers led to an appreciation for atmospheric pressure and the crucial insight that ’we live sub-

merged at the bottom of an ocean of air’. This included that horizontal variations of pressure were the immediate cause of

winds, the start of dynamic meteorology. A derived unit of pressure, the torr, is in his honor and is 1 torr = 1 mmHg (nominal

g) at 0 C. The torr is today used mainly in vacuum applications.
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Figure 3: (left) Observed volume transport from the orifice-only experiments of Fig. 2. The transport
is nondimensionalized consistent with Eq. (12). It is argued that there are two regimes evident here. At
small h/d, the nondimensional transport decreases as h/d goes to zero. At larger h/d, the transport
is approximately independent of h/d, the magenta line which is Model 1, Sec. 3.2. (right) This is the
same data shown at left, except that the independent variable is h/hσ , where hσ is the pressure head due
to surface tension, Eq. (19). This magenta line comes from Model 2 described in Sec. 4.3.

• At smaller values of h/d (small compared to what?), the normalized volume transport goes to

zero as h/d goes to zero, and indeed the transport may vanish while h is still appreciable. This

is directly related to the surface tension-induced bubble noted above, and discussed further in

Sec. 4.

• At larger values of h/d, roughly h/d > 10, which includes most of the experimental data, the

normalized volume transport is quasi-independent of h/d. In other words, at larger values of

h/d, the function F (h/d) is nearly a nondimensional constant, call it C .

Dimensional analysis does not evaluate C , but the data of Fig. 3 indicate that

Q

Q0

= C = 0.77 ± 0.03 (13)

is a reasonable first approximation for these three experiments. It bears some emphasis that the step

from Eq. (12) to (13) is

• empirical — C is calibrated using these observations, and 0.77 may not be appropriate to your

apparatus or your fluid.

• contingent — Eq. (13) holds only for larger h/d.
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The parameter C is called the ’discharge coefficient’, and a value in the range 0.6 < C < 0.8 is

expected for simple, square-edged orifices of the present sort.7

The physical process that leads to a C that is slightly less than 1 in these experiments is not

primarily friction (viscosity), as one might first guess, but rather inertial acceleration on the water

approaching the orifice. The evidence for this is twofold. First, C varies only weakly with viscosity

(temperature) in this family of experiments. Second, dye observations show that the flow into the

orifice comes from the entire hemispherical region inside the tank. The inflow to the orifice has to be

accelerated, and some fraction of it also has to make a sharp 90 degree change in direction as it

approaches and enters the orifice. Even modest fairing (rounding on the inside of the orifice) can ease

this sharp change of direction and bring C close to 1.0. On this basis, the orifice flow process will be

called ’inertial’ to distinguish from viscous and surface tension phenomena coming in the next two

sections.

Given (13), a useful model of the outflow transport, dubbed Model 1, is just

Q1 = C × Q0 = C
π

4
d2

√

2 g h. (14)

From here and given Eqs. (1) and (2), it is straightforward to write an ODE for h( t ),

dh

d t
= − Q1

A
= − C

d2

D2

√

2 g h (15)

that may be integrated to find

h(t) =

(

√

h0 −
(

0.5C (
d

D
)2

√

2 g

)

t

)2

. (16)

This defines a parabolic h(t) (second degree in time) that, overall, bears a striking resemblance to the

experimental data shown in Fig. 2 (the dashed, blue line compared to the blue dots). In all cases the

surface height decreases rapidly at the start of an experiment and then slows markedly as h → 0.

When a pipe is present, friction (laminar viscosity and turbulence) can change the rate quite a lot, but

this pattern is characteristic of the
√

g h dependence of a gravity-driven outflow transport, Eq. (11).

Model 1 makes a very good start, and for not much effort. Regardless, there is some room for

improvement. Eq. (14) departs from the observations at smaller values of h/d, roughly h/d < 8, in

that it indicates constant Q1/Q0 = C all the way to h = 0. On the other hand, the observations

indicate that the (nondimensional) transport slows for small h/d, and then may stop altogether before

the tank is completely drained, Fig. 3. This is not a measurement artifact. The corresponding error in

Eq. (16) is that the predicted h goes to zero. Evidently something is missing from (14) and (16).

7 A thoughtful discussion of C is by Savage, T. Porterfield, W. R. Penney and E. C. Clausen, The draining of a tank: A

laboratory experiment in fluid mechanics. ASEE Midwest Section Conference, 2021.
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3.3 Problems

• The orifice-only outflow Model 1, Eq. (14), can be rewritten as an ordinary differential

equation dh/dt = F (h, g, d, D), Eq. (15). Integrate this equation given an initial value

h(t = 0) = h0 to find Eq. (16).8 How does this solution compare with the expectations from

dimensional analysis, Eq. (3)?

• It has been noted that a parabolic trajectory h(t) is characteristic of a gravity-driven outflow for

which Q ∝
√

g h. Suppose instead that the outflow transport is (for some reason) linear in h,

i.e., Q ∝ g h. What is the trajectory h(t) in that case?

• Imagine that the water tank is closed on top, so that the air pressure above the water surface

can be altered by a controllable air pump. What additional air pressure (above atmospheric)

would be required to yield a constant Q, until the tank drains?

• It was claimed in Sec. 3.2 that the discharge coefficient C for the present experiments is

effectively constant because it is a result of inertial (accelerated) flow. This depends upon the

geometry of the orifice which doesn’t change appreciably from one experiment to the next. It is

messy to think about, but suppose that the fluid being drained is honey, which has a viscosity

that is from 3000 to 10000 times larger than that of water. How would this increased viscosity

affect the magnitude of the transport? Does this imply that C must, in general, depend upon ν,

even while the claim made here is that viscosity is not important for these orifice-only

experiments? (This illustrates why nearly every claim made here has to be qualified with the

tedious phrase ’for these experiments’.)

4 Surface tension reduces transport in the small h/d regime

It was noted above that the outflow may come to a stop before h → 0. In that state the outflow

appears to be blocked by a flattened bubble of fluid that caps the orifice. The inference is that surface

tension has overcome the hydrostatic pressure difference (7) that would otherwise accelerate fluid

through the orifice. This is not a large effect on the scales that characterize the parameter range of

these experiments, i.e., the d, h, g, etc. However, this effect is systematic and interesting on its own

merits.9

8An excellent tutorial for this problem is https://www.youtube.com/watch?v=iKDdInE7wqE.

9 Surface physics is vitally important for microfluidic (very small scale) devices. An excellent introduction to sur-

face tension is https://en.wikipedia.org/wiki/Surface tension Also highly recommended and more advanced is

https://web.mit.edu/1.63/www/Lec-notes/Surfacetension/Lecture1.pdf
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4.1 Why do fluids exhibit surface tension?

Surface tension is a fundamental characteristic of a fluid that has an appealing microscale explanation.

The individual molecules of a fluid are free to move and jostle around but they are also cohesive, in

that fluid molecules exert an intermolecular attraction (hydrogen bonding in water) that acts to clump

fluid molecules together. When clumped together, water molecules are in a lower energy state than if

they were separated and moving independently (as do the molecules that make up a gas). Where

there is a free surface that exposes the fluid to some other, less attractive material — if water, then air

— the molecules that are immediately on the free surface will not have fluid molecules on all sides,

and so will be in a slightly elevated energy state; think of attracting particles that have been pulled

apart. The existence of a free surface thus implies some potential energy that may be characterized as

a thermodynamic property called surface tension, denoted here by σ. Surface tension can be viewed

as either an energy per unit area, in SI units, Joules per meter squared, and so σ
.
= [ 1 0 − 2 ], or,

as a force per unit length, Newtons per meter, and having the same fundamental dimensions. Both

interpretations are useful.

Water has a fairly high surface tension,

σ ≈ 75 × 10−3 J m−2 = N m−1,

compared to most other familiar fluids, e.g., isopropyl alcohol, for which σ ≈ 20 × 10−3 N m−1. A

familiar consequence is that water tends to form into spherical drops (absent some other influence

such as air drag on a falling drop) that minimize surface area, and thus the surface energy for a given

volume. Surface tension, viewed as a force per unit length, acts as a membrane under tension that

maintains a spherical shape. A consequence is that there is an elevated pressure inside a water drop

that is proportional to σ times the Laplace curvature of the surface. The curvature of a sphere is 2/r,

with r the radius; the pressure inside a spherical water drop is thus

Pdrop = 2σ/r (17)

higher than the ambient pressure.9

4.2 Surface tension and pressure within a cylindrical jet of water

A vigorous outflow through a round orifice produces a cylindrical jet of water, Fig. 1.10 The surface

curvature of a cylinder is half that of a sphere having the same radius and thus the surface-tension

10 A parcel of fluid within the free-falling jet has a certain horizontal velocity, dX / dt = Vo, that is conserved, and it

is accelerated downward by gravity at a rate d2 Y / dt2 = − g. A parcel, and thus the jet, traces a parabolic (ballistic)

trajectory, X ∝ (Vo /
√

g)
√
−Y .
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induced pressure within the jet is estimated to be half that of the corresponding sphere, i.e.,

Pσ =
σ

r
. (18)

The pressure Pσ can be expressed as an equivalent hydrostatic pressure head,

hσ =
σ

ρ g r
, (19)

which is constant for a given experiment. For the surface tension of water and if r is a few

millimeters, then hσ is O(1) cm.

From this discussion it seems plausible that the outflow transport might be dependent upon hσ

which suggests a revised form of Eq. (12),

Q

Q0

= F (
h

hσ
). (20)

When the data of Fig. 3 are nondimensionalized in this way (right panel), the normalized transport is

found to decrease significantly when h/hσ < 5, and vanishes at roughly h/hσ ≤ 1. This is consistent

with the notion that the surface-tension induced pressure inhibits the outflow, an effect which is

especially noticeable for the smaller diameter orifices and pipes considered here.

4.3 Model 2 includes a first-order effect of surface tension

This, in turn, suggests a revised model for orifice transport. Model 1, Eq. (14), amounts to taking the

pressure outside the tank to be zero. Now we understand that there is a slightly higher pressure

required to overcome the surface-tension induced pressure acting upon the jet. With that in mind,

revise the Torricelli velocity to

VT σ =
√

2 g (h − hσ), (21)

and define a Model 2 for the transport,

Q2 = C
π

4
d2

√

2 g (h − hσ) (22)

that is valid only for h ≥ hσ . This may be solved for

h(t) = hσ +

(

√

h0 − hσ −
(

0.5C (
d

D
)2

√

2 g

)

t

)2

, (23)

the solid red line of Fig. 2. Compared with Model 1 that ignored surface tension (the dashed red

line), the new Model 2 solution for h(t) is only slightly different overall from that of Model 1, but it



4 SURFACE TENSION REDUCES TRANSPORT IN THE SMALL H/D REGIME 21

does include the qualitative feature that h asymptotes to hσ, rather than to zero, as does the solution

of Model 1.

A more sensitive test of Model 2 comes from differentiating the solution (23) and evaluating

Q2/Q0 = F (h/hσ), the magenta line of Fig. 3. This shows a slowing of the outflow as h/hσ falls

below about 5, and stopping altogether at about h = hσ. These are reasonably consistent with the

observations, and suggest that this first-order treatment of surface tension is a small but useful step

toward a more complete and realistic model.11

The first-order treatment of surface tension reflected in Eq. (21) is as far as this study will go

regarding surface tension per se. This result will be incorporated into Models 4 and 5 developed in

Secs. 6 and 7. Until then, surface tension will be set aside in order to focus attention on the viscous

effects that can greatly modify the outflow transport through a pipe.

4.4 Problems

• The left and right sides of Fig. 3 give us a chance to compare two versions of a

nondimensional format, F (h/d) vs. F (h/hσ) (recall that F merely holds a place for an

unspecified function). Which is the better nondimensional independent variable, h/d, or h/hσ?

What criteria could we deploy to decide this? Three suggestions: First, simplicity or

transparency are always desirable, but probably not decisive. Second, if one version produces a

more convincing collapse of the data toward a single curve, then that would surely count in its

favor. Third, which of the inferred relations F (h/d) and F (h/hσ) has a better-motivated,

quantitative physical interpretation? Can you show that

h

hσ
∝ hydrostatic pressure

surface tension pressure
.

This ratio of gravitational to surface tension pressure is often called a Bond or Eotvos number.

• Using dimensional analysis, show that the pressure anomaly inside a cylindrical jet of radius r

is as given by Eq. (18), Pσ = σ / r up to an unknown factor (happens to be 1). Two hints: for

surface tension, σ
.
= [ 1 0 − 2 ] and pressure, P

.
= [ 1 − 1 − 2 ]. Can you go from here to

the equivalent height of a hydrostatic pressure and Eq. (19)?

11 The present treatment of surface tension overlooks a detail (within a detail). As h approaches hσ, the outflow slows

markedly, and then begins to dribble down the side of the tank: a weak outflow continues, but there is no more ballistic jet.

After a short time, the dribbling stops and the orifice becomes capped over, as described above. The cap has some curvature

but not so much as a sphere: Pσ−cap ≈ σ / r seems plausible for the blocked outflow. Also ignored here is the wetting prop-

erties of the solid substrate: polypropylene, does it attract or repel water? A single stage surface tension effect estimated by

Eq. (22) is perhaps a fortuitous approximation. For more on these phenomena, see Ferrand, J., L. Favreau, S. Joubond and E.

Freyssingeas, 2016, Wetting effect on Torricelli’s law, Phys. Rev. Lett., 117, 248001 - 248005.
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Figure 4: Surface height, h(t),
from three experiments in which
the water was drained through
pipes that had diameter d = 4.7
mm and one of three lengths,
L = 0.96 m, 0.53 m, or 0.03 m,
almost an orifice. The solid lines
are calculations made by Model 4
discussed in Sec. 6.
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Figure 5: Surface height, h(t), from three ex-
periments that had pipe diameter and length in
common, d = 4.7 mm and L = 0.64 m and thus
L/d ≈ 140. They differed by the temperature
of the water, from nearly freezing (blue dots) to
very hot (red dots). As a consequence, the kine-
matic viscosity, ν ( = µ/ρ), varied by roughly a
factor four. The warmest water (red dots) which
had the smallest viscosity, drained considerably
faster than did the cold water (not surprising),
but, notice that it drained only slightly faster
than did the room temperature water (green
dots). This hints at something important com-
ing in Sec. 7.2
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5 Outflow through an orifice and a pipe, starting with

observations

If the outflow must pass through a pipe, as on the cover page, it is expected that the volume transport

will be lessened by viscous drag between the moving water and the walls of the pipe. A few

experiments show this effect clearly; for a given fluid (water at room temperature) and a given

diameter of the pipe and orifice, the tank drains considerably more slowly when the pipe is longer,

Fig. 4. By changing the temperature of the water, and thus the viscosity of the water, it is evident

that warmer water (smaller viscosity) drains somewhat faster than does colder water, Fig. 5. The

qualitative sense of these viscous effects is not surprising. To go beyond that and make a model, we

have to define the magnitude of viscous effects. How can we organize the experimental data to this

end?

As a guide, let’s look for the relationship between the outflow transport and the (presumed)

relevant variables under the assumption that the outflow transport is dependent only upon the local

conditions at the orifice and the pipe (note that surface tension is omitted from here on until Model

5).

• A VPlist for pressure-driven outflow of water through an orifice and a pipe:
(24)

1. outflow volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

2. diameter of the orifice, d
.
= [ 0 1 0 ], a parameter,

3. hydrostatic pressure head at the orifice, g h
.
= [ 0 2 -2 ], an independent variable,

4. kinematic viscosity of the water, ν
.
= [ 0 2 -1 ], a parameter,

5. length of the pipe, L
.
= [ 0 1 0 ], a parameter.

Three nondimensional variables are expected, and for this (arbitrary) ordering of the VPlist, the

algorithm returns
Q

Lν
= F (

d

L
,

L2 gh

ν2
). (25)

This is correct mathematically, i.e., it is a basis set of nondimensional variables for this VPlist.

However, the important scale that normalizes the transport, Lν, seems oddly out of place here. (Lν

will arise again later in a context where it will make sense.) For now, we would prefer the physically

sensible zero-order model defined by Eq. (11), Q0 = π
4
d2
√

2gh. This is a reminder that the purely

formal method of dimensional analysis may not provide what we would recognize as physical sense;

that is left for us. After some reorganizing of the variables in (25) there follows an important

relationship:

Q

Q0

= F

(

L

d
,

VT d

ν

)

(26)
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The left side of (26) is the now familiar nondimensional volume transport. The unknown function F

on the right-hand side depends upon two nondimensional, independent variables. The first

independent variable, L/d, is an aspect ratio, and is a straightforward reply to ’how long is this

pipe?’ given in natural units. In these experiments, L/d is in the range 0 - 500. The second

nondimensional variable on the right side of (26) is less obvious.

5.1 Reynolds numbers, external and internal, Rex and Re

The second independent variable

Rex =
VT d

ν
(27)

has the form of a

Reynolds number ∝ velocity scale × length scale

kinematic viscosity
(28)

This ratio is important in many contexts, and Reynolds numbers come in correspondingly many

versions.12 The terms of (27) are:

• ν, kinematic viscosity, is straightforward when it is regarded as a fluid property, the usual

intent of the Navier-Stokes equations.

• VT , a velocity scale (a speed) is usually clear. In Eq. (28) the velocity is the Torricelli velocity,

VT =
√

2 g h, which may be evaluated a priori, before a solution is known, presuming that h

is observed or otherwise known. For that reason the ratio (28) is said to be an ’external’

Reynolds number. This Rex is different from the much more often encountered

internal Reynolds number, Re =
Va d

ν
, where Va =

Q

a
(29)

The velocity Va is the area-averaged velocity in the pipe and is known only after we know Q

and so Re of Eq. (29) is said to be ’internal’. The bridge between these Reynolds numbers is

Re = Rex
Q

Q0

(30)

and hence Re will be somewhat smaller numerically than is Rex. The internal Reynolds

number will be used extensively in Sec. 7 when this analysis makes connection with the

extensive historical literature on pipe flows.

12 An excellent discussion of the Reynolds number including an interesting history is

https://en.wikipedia.org/wiki/Reynoldsnumber
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• L, a length scale, here taken to be the pipe diameter, d. The length scale is often the least

obvious term in a Reynolds number. A conventional (though not altogether convincing) way to

develop an interpretation of the length scale comes from a scaling analysis of the Navier-Stokes

momentum equation,

∂V

∂ t
+ (V · ∇)V = −∇P/ρ + ν ∇2V + g. (31)

The goal is to compare the magnitude of the viscous term (second term on the right) to the

inertial, acceleration term (second term on the left). Let V be the velocity scale, an upper

bound on the magnitude of the fluid velocity expected in the problem. The kinematic viscosity

ν can remain as is. The key is to identify a length scale, X, over which this velocity varies by

O(1) so that, say for the x direction,

∂V

∂x
∝ V

X
and ∇2V ∝ V

X2
.

Under the assumption that a single length scale X is appropriate to the spatial derivatives in

both the inertial term and the Laplacian of the viscous term, then it is straightforward to

estimate the ratio of the inertial term(s) and the viscous term;

inertial

viscous
∝ (V · ∇)V

ν ∇2V
∝ V 2/X

ν V/X2
=

V X

ν
= Re,

a Reynolds number. In the case of pipe flow being considered here, the velocity varies with the

radius, mainly, and thus the length scale X is identified as d.

Interpretation of Rex: It is reassuring to find that a nondimensional number comes out to be O(1),

as that implies a comparison of like things. There is no such comfort here; the numerical values of

Rex are O(104) (which is typical also for the Re of intermediate scale pipe flows). Taken literally,

this would imply that the possible viscous force is much, much less than the inertial forces, and that

some other term in the Navier-Stokes momentum balance must account for inertial accelerations

(pressure gradient and/or time dependence). That is true, but nevertheless, these very large Rex

should not be interpreted to mean that viscosity may be omitted altogether (reminiscent of the air

flow around a golf ball or a soccer ball, Sec. 4.5 of the main text).

What is the interpretation of Rex for the present experiments? First, note that Rex is the only

independent variable of Eq. (26) holding ν; whatever viscous effects there are will be attributed to

Rex-dependence. Within this family of experiments, we can expect that a smaller value of Rex

should correspond to greater viscous effects, viz., reduced transport.13 The external Reynolds number

thus appears to be a rough comparative measure of the ratio of inertial force (accelerations) to

13 We usually think of a Reynolds number in association with viscous effects, but notice that viscosity happens to be in the

denominator (it could have been otherwise). With that convention, smaller ν gives large Re, all else equal.
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viscous force. Finally, given Eq. (30), the present Rex can easily make contact with the vast literature

on pipe flows that rely on the internal Reynolds number, Re (more on this in Sec. 7).

5.2 The function F for orifice plus viscous pipe flow

The relation (26) may be evaluated from the experimental data to provide a look at the function,

F (L/d, Rex), Fig. 6. The coordinate system is three-dimensional since there is one nondimensional

dependent variable, Q/Q0, and two nondimensional independent variables, L/d, and Rex, as noted

above. (Notice that there is no mention of surface tension.)

A given experiment returns a handful of data points, all at the same L/d, and sampling a range

of h, starting from h0 and going to smaller h, in some experiments, to hσ . The data points from a

given experiment thus line up in strings that run parallel to the Rex axis; larger Rex is due to larger

h. The nondimensional transport within a given experiment decreases smoothly with decreasing Rex

and thus with decreasing h. This is qualitatively consistent with the expectation that smaller Rex (in

the case of a single experiment because of small h) will generally correspond to a greater viscous

effect.

The amplitude of the viscous effect, i.e., the decrease of the transport, depends also upon L/d.

For the smallest values of L/d found on the left-most part of Fig. 6, this becomes the orifice-only

result that Q/Q0 = C ≈ 0.77. In that limit, the Rex-dependence vanishes: if L vanishes, then

viscous effects effectively vanish as well. The converse is just as true; for a given Rex, the

nondimensional transport decreases significantly with increasing L/d; the decrease is especially

strong at small values of L/d. In the range L/d ≈ 400 and smaller Rex found in the lower right

corner of Fig. 6, the nondimensional transport is only about 25% of the orifice-only value, C .

It appears that the nondimensional coordinates of Eq. (26) make a useful summary of the

transport dependence upon h, L, d and ν. Once we know this dependence we can write an ODE for

the surface height,
dh

dt
= − A−1 Q0 F (L/d, Rex ), (32)

a generalized version of Eq. (15). The Rex in the argument of F above will include h. This will

likely frustrate a separation of variables, but numerical solution should be fast and accurate. To

implement such a solution, the function F has to be made portable. One could estimate an empirical

fit to a dataset like Fig. 6, or, seek an appropriate model.
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Figure 6: Observed nondimensional volume transport as a function of the pipe aspect ratio, L/d, and the
external Reynolds number, Rex = VT d / ν. There are 23 experiments shown here, each of which yields
between five and 12 data points; 181 points in total. The data from a given experiment line up in a string
that has a constant L/d, but a varying h. Each experiment thus samples a small range of Rex. The red,
green and blue dots are the data from the nine experiments of Figs. 2, 4 and 5. The black dots are from
fourteen other, similar experiments. This is a rather dense and complex figure, but if you study it for just
a minute you can envision that the locus of data points implies a two-dimensional surface F (L/d, Rex).
A key objective of this study is to understand how such a surface arises and to use that understanding as
a guide to model development coming in Secs. 6 and 7. These data and a Matlab script to read and plot
them are linked in Sec. 8.
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5.3 Problems

• Fig. 6 includes all of the data taken in these experiments, including data at small h /hσ that

were likely affected by surface tension as noted in the previous section. There is no accounting

for surface tension effects in the coordinate system of Fig. 6, and so it is questionable whether

they should be included. Where in Fig. 6 (at what L/d and Rex) are these

surface-tension-affected data?

• Can you find and then interpret the data that came from the three experiments with variable

temperature shown in Fig. 5?

• Using the properties of a null space basis, recast Eq. (25) into the form preferred here, Eq. (26).

The key step is choosing a scale for the dependent variable.

6 Models of viscous, laminar pipe flow

This section will develop models of laminar flow that are appropriate for the lower Rex range of the

parameter space sampled here, roughly Rex ≤ 7000. It is expected that at larger Rex there will be a

transition from laminar to turbulent flow with a consequence of larger wall stress (for a given Rex)

than would be predicted by a laminar flow model. More on this in Sec. 7.

6.1 Poiseuille’s solution for laminar flow, Model 3

For now, consider pipe flow alone, ignoring the necessity of a tank and orifice, and omitting surface

tension. Suppose that the pressure at the ends of this horizontal pipe are known and that the pressure

difference is δPpipe. Additionally, assume that the flow is unchanging along the pipe, and said to be

fully developed.14 In that case the pressure gradient, a force per unit volume, is

∂P

∂x
=

δPpipe

L
,

and also uniform along the pipe. Given the pressure gradient, what is the volume transport through

the pipe?

14The strong acceleration of flow through the orifice and into the pipe is bound to cause some disturbance that may damp

out with distance downstream. The distance downstream required to lose memory of the orifice is called the entry length; the

equilibrated flow further downstream is said to be fully-developed. The effect of a finite entry length is likely to be increased

drag overall. There is some evidence of that in this dataset, but it is small compared to the effects of turbulent flow taken up

in Sec. 7.
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(33)• A VPlist for the pressure-driven transport of a fully-developed, viscous pipe flow:

1. volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

2. pressure gradient, ∂P/∂x
.
= [ 1 -2 -2 ], an independent variable,

3. radius of the pipe, r
.
= [ 0 1 0 ], a parameter,

4. dynamic viscosity, µ
.
= [ 1 -1 -1 ], a parameter.

This is a subset of the VPlist that led to Eq. (26). In this VPlist there are four dimensional variables

having three fundamental units, and hence there is just one nondimensional variable, the

nondimensional transport, that must be a constant,

Q µ

r4 ∂P/∂x
= constant. (34)

The result (34) from dimensional analysis has the form of the famous and very useful Poiseuille

solution for the transport of a laminar, fully-developed, viscous pipe flow,

Q3 =
π

8

r4 δPpipe

µ L
, (35)

also called the Hagen-Poiseuille solution.15 This is taken to be Model 3. Two things to note: 1) the

sensitive dependence upon r, here r4 compared with r2 for an inviscid, inertial orifice flow of Sec. 3,

and, 2) the transport is linear (directly proportional to) the pressure gradient. This seems plausible,

but is not always the case as we will see in Sec. 7. Poiseuille’s16 solution for laminar pipe flow is

closed, including the leading factor π/8 that is needed to calibrate the dimensional analysis result,

(34).17 After some rearrangement, the transport (35) can be rewritten in a nondimensional form using

the zero-order model of Eq. (11) to scale the dependent variable,

Q3

Q0

=
1

64
(
L

d
)−1 Rex (36)

15The dimensional analysis leading to (34) is standard fare and is useful for now. However, its success in yielding the

Poiseuille relation owes to an arbitrary choice in the variables of the VPlist (33) that will be discussed further at the end of

Sec. 7.

16 Jean L. M. Poiseuille (1797 - 1869) was a French physiologist who pioneered the quantitative study of blood flow. He

discovered the Poiseuille relation for viscous flow in pipes (blood vessels) experimentally. Some years later he provided the

corresponding theory, including Eq. (35), one of the first complete solutions of the Navier-Stokes equations. His contribu-

tions also include the development of practical instruments for measuring blood pressure in vivo. The CGS unit of dynamic

viscosity is the poise, P, in his honor; 1 P = 0.1 N s m−2.

17 The derivation of (35) is useful to see and can be found in most fluid mechanics texts. A very good online reference is

https://en.wikipedia.org/wiki/Hagen-Poiseuille equation
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Under the conditions of its derivation, fully-developed laminar flow, the Poiseuille solution gives

a very good account of experimental observations. Indeed, it works well enough that it may be used

along with careful measurements to estimate fluid viscosity, µ. Does (35) suffice for the experimental

configuration used here? We can learn a lot by plotting the Poiseuille solution in the coordinates of

Fig. 6 (Fig. 7, upper right). This shows some promise in the range of smaller Rex and larger L/d,

which implies large viscous effects. But at larger Rex and smaller L/d, the Poiseuille solution

diverges, predicting transport that is much larger than the transport that could be accelerated through

the orifice by the given pressure difference. The conclusion has to be that the Poiseuille solution

taken alone, Eq. (35), Model 3, does not make a suitable model of the present system — tank, orifice,

pipe, discharge into air. (No doubt M. Poiseuille could have told us as much, even without the

hindsight of a fancy diagram.)

6.2 A hybrid Model 4 – Sig. Torricelli, say hello to M. Poiseuille

The fluid path from the tank to the open air can be envisioned in three parts: first, inertial

(accelerated) flow from the tank into the orifice; second, viscous (and possibly turbulent) flow

through a pipe; and third, escape into the open air and production of a free surface. Each of these has

been discussed in isolation, and now we will seek to connect them to make a model of the system as

a whole. The idea will be to ensure that the pressure is continuous from the tank to the open air, and

that the transport is consistent with the pressure changes and is constant throughout.

Let the pressure across the orifice be ρ g h − Px where Px is the unknown pressure post-orifice,

or right at the start of the pipe. The transport through the orifice will then be estimated as

Qorf = Cπr2
√

2(g h − Px/ρ). (37)

This pressure difference and thus the transport through the orifice will be less, and possibly a lot less,

than the orifice-only Model 1 of Sec. 3, which took the pressure Px just beyond the orifice to be

zero.

The pressure at the end of the pipe is Pσ = σ/r, the surface tension-induced pressure on the

escaping jet of water in contact with air. The transport through the pipe will be estimated from

Poiseuille’s relation,

Qpipe =
π r4

8µL
(Px −

σ

r
). (38)

The one unknown in this is Px, the pressure at the start of the pipe. This can be solved by requiring

that the transport must be continuous,

Qorf = Qpipe. (39)
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Figure 7: Four models of Q/Q0 in the independent coordinates L/d and Rex used in Fig. 6. This nec-
essarily omits reference to surface tension. Upper Left The elementary Model 1 solution for trans-
port through an orifice, dubbed Q1. This solution does not depend upon L or ν and so this model de-
fines a flat plane in this coordinate system. Upper Right The Poiseuille solution Q3 for steady, fully-
developed pipe flow. The transport diverges for small L/d and large Rex, i.e., in the parameter range of
smaller viscous effects, and has been clipped at 1. Lower Left The solution of Model 4’ that combines
Torricelli and Poiseuille, Eq. (41) and so has transport that is consistent with both orifice and viscous
pipe flow (discussed in Sec. 6.2). The prime indicates that surface tension has been omitted. Lower
Right Model 5’ is similar to Model 4’ at left, but includes a correction for the greater wall stress that
occurs when the flow is turbulent at larger Rex (Sec. 7). Notice the difference between Model 4’ and
Model 5’, especially at larger Rex.
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Let

p =
Px

ρ
, S =

r2

8C ν L
, and recall hσ =

σ

ρ g r
and ν =

µ

ρ
,

in which terms the continuity of transport (39) becomes

√

2(g h − p) = S (p − g hσ).

Squaring and rearranging into a quadratic in p gives

S2 p2 + (2 − 2S2 g hσ) p + S2 g2 h2

σ − 2 g h = 0. (40)

Once this is solved for p = Px/ρ (the positive root) the transport may be evaluated from either (37)

or (38). This model and solution are called Model 4 and Q4.

When surface tension is included, the analytic expression for Q4 is too complex algebraically to

be useful (though readily evaluated numerically in Sec. 6.4). For now, simplify by setting hσ = 0 so

that we can examine the orifice plus viscous pipe flow component, which will be dubbed Model 4’.

The pressure, p, is then

p =
Px

ρ
=

−1 +
√

1 + 2 g hS2

S2
.

Substituting into (38), and after considerable rearranging:

Q4
′

Q0

= C
(

( 1 + 1024C2 E2 )1/2 − 32C E
)

, (41)

where

E =
L

d
Re−1

x . (42)

The Model 4’ solution, Fig. 7, lower left, is similar to the Model 3 Poiseuille solution for

smaller values of the Reynolds number, roughly Rex < 2000 where viscous effects are most

important. It is qualitatively different at larger Rex where the Model 3 solution diverges. The Model

4’ solution gives reasonable transport in that regime because it has included the very important

constraint imposed by the necessity for accelerated, inertial flow from the tank and into the orifice.

6.3 A collapse to one independent variable

The Model 4’ solution (41) has the interesting property that it depends upon a single, independent

nondimensional variable, E, vs. the L/d and Rex separately that we learned from dimensional

analysis. The nondimensional variable E includes all of the important parameters that are expected to

contribute to Q /Q0 in these experiments (except for σ). A dependence upon the single
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Figure 8: This surface is the
Model 4 solution evaluated from
Eq. (40), and the points are the
full set of observations. The data
points that lie below the surface
are blue; those above the surface
(a distinct minority) are red. The
overall shape of the model surface
looks reasonable compared to
the data, but there is a clear ten-
dency for Model 4 to overestimate
transport. A more quantitative
comparison comes in the next two
figures.

nondimensional variable E is a special case of the more general result from dimensional analysis that

indicated two separate, independent nondimensional variables, L/d and Rex. This important

difference arises because Model 4 was built upon three physical constraints — continuity of volume

transport, a solution for orifice flow, and Poiseuille’s solution for laminar pipe flow — that were not

incorporated into the VPlist (24). Thus the result from dimensional analysis is more general, i.e., less

specific, than is the solution of a model that is otherwise consistent with the VPlist. This is a

characteristic of dimensional analysis.18

The Eqs. (41) and (42) are somewhat surprising, and, if consistent with the observations, useful

as well. To find out whether this holds within the observations we need only plot the usual Q /Q0

against E and find a moderately good correlation, Figs. 8 and 9. It is always desirable to find the

most compact description of a dataset or model solution, and this new version (new compared with

the three-dimensional presentation of Fig. 6) meets that criterion.

The E description may be readily interpreted as the ratio of two time scales:

E =
L/VT

d2 / ν
∝ advection time

diffusion time
. (43)

The numerator is the time required for advection over the length of the pipe L at the speed VT , and

18This important lack of specificity (or unintentional generality) is inherent to dimensional analysis and is discussed in

greater depth in the main text, Sec. 3.
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Figure 9: Observed transport
(colored points) as a function of
a single independent variable,
E = (L/d)Re−1

x . This is a
projection of Fig. 8 onto a Q
vs. E plane. The green line is
the solution of Model 4’ (which
omits surface tension). The red
data points have large Rex, and
the green data points are at small
h /hσ and likely affected by sur-
face tension. The black dotted
lines are the asymptotes of Q′

4 for
small and large E. Notice that the
Model 4’ solution parallels the
data cloud, but sits above it, i.e.,
Model 4’ systematically overes-
timates the transport, as noted in
the previous figure. This will be
addressed in Sec. 7.

the denominator is the time required for diffusion across the diameter of the pipe. If the time

required for diffusion is comparatively large, then E is comparatively small and viscous effects

should be less prominent. This is consistent with the observations.

The function F (E) of Eq. (41) in Fig. 9 is not particularly transparent, but it does have familiar

asymptotes, Eq. (44), (45), and (46), that are sketched onto Fig. 9 as dashed, black lines.

• At E = 0, where there is no effect of viscosity,

Q4 /Q0 = 0.77 = C. (44)

This is Model 1, inertial, orifice flow.

• At small values of E, which corresponds to small (but not zero) viscous effects, the Model 4

solution goes to

Q4/Q0 → C
(

1 − 32C E + 512C2 E2 ....
)

. (45)

This indicates a strong decrease of transport with increasing L that is indeed observed for

shorter pipes.

• At large E and large viscous effects,

Q4 /Q0 → 1

64
E−1, (46)
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which is the Poiseuille solution for viscous, laminar pipe flow, and Model 3.

6.4 Model 4 includes surface tension and viscosity appropriate to a laminar flow

Now consider the solution of Eq. (40) with surface tension included, called Model 4 (no prime). The

VPlist for this model is

• A VPlist for pressure-driven outflow of water through an orifice and a pipe:
(47)

1. outflow volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

2. hydrostatic pressure head at the orifice, g h
.
= [ 0 2 -2 ], an independent variable,

3. diameter of the orifice and pipe, d
.
= [ 0 1 0 ], a parameter,

4. length of the pipe, L
.
= [ 0 1 0 ], a parameter.

5. kinematic viscosity of the water, ν
.
= [ 0 2 -1 ], a parameter,

6. surface tension of the water, σ
.
= [ 1 0 -2 ], a parameter,

7. density of water, ρ
.
= [ 1 -3 0 ], a parameter.

A basis set of nondimensional variables is, after considerable rearranging,

Q4

Q0

= F (
L

d
, Rex,

h

hσ
). (48)

If the E-collapse discussed just above is applicable here as well, then provisionally,

Q4

Q0

= F (E,
h

hσ
). (49)

To test whether this is valid we can make a three-dimensional graph of the Model 4 solution

alongside all of the data, Fig. 8. The surface defined by Model 4 shows the variation of the

nondimensional transport with E that could have been anticipated from Fig. 9; it also reveals a sharp

decrease in the transport as h/hσ → 1 due to surface tension. This could have been anticipated from

Fig. 3, right.

The Model 4 solution makes a plausible qualitative comparison with the observations, Fig. 8,

including at small h /hσ . It may be compared quantitatively with the full dataset and returns a

coefficient of determination R2 = 0.74. If the data that have large external Reynolds numbers,

Rex ≥ 7000, are excluded from the sample, then R2 = 0.86. This is a more appropriate test of

this laminar flow model.

Model 4 accomplishes most of what we set out to do in Sec. 1.2: it is understandable, and it

gives reasonable (by no means perfect) predictions. It might be appropriate to thank Sig. Torricelli



6 MODELS OF VISCOUS, LAMINAR PIPE FLOW 36

Figure 10: (left) Observed volume transport, blue dots, and the Model 4’ solution shown as a surface in
coordinates (L/d, Rex) as in Fig. 6. The stem goes from the data point up or down to the surface. This
makes it especially clear that Model 4 overestimates transport (underestimates wall stress) at larger val-
ues of Rex. This plot includes all of the data, including data taken at small h /hσ where surface tension
effects are important. The model solution shown in these coordinates has to take σ = 0 and so can not
replicate the reduced transport at very small h and small Rex. (right) This is the same data shown at left,
but here the surface is from Model 5’ discussed in Sec. 7. The overestimate of transport seen at left is
reduced considerably.
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Figure 11: Modeled vs. observed trans-
port. There are two versions of the mod-
eled transport, the red dots are from
Model 4 and the blue dots are from
Model 5. Notice that Model 4 has a no-
ticeable positive bias (predicts excess
transport). This is mostly cured by the
changes made to get Model 5, discussed
in Sec. 7.



6 MODELS OF VISCOUS, LAMINAR PIPE FLOW 37

and M. Poiseuille for their remarkable contributions, and stop here. Except for one issue: Model 4

overestimates transport by a noticeable amount, as much as 35% in some regions of parameter space.

We have one more step to take.

6.5 Problems

• Starting with the Poiseuille solution, Eq. (35), recast into the nondimensional coordinates of

Fig. 6. Show that the Poiseuille solution is (this repeats Eq. (36)),

Q

Q0

=
1

64
(
L

d
)−1 Rex.

How does this compare with the surface plotted in Fig. 7, upper right?

• The pipes in these experiments were maintained in a horizontal orientation so that we wouldn’t

have to consider the angle from horizontal as yet another variable. Now imagine that the

discharge end of the pipe was tipped up slightly. How would this affect the transport of the

outflow? Can you connect this with the treatment of surface tension in Sec. 4?



7 TURBULENT FLOW AND MODEL 5 38

Make a model, then test a model.

Models flow with grace.

Real, twisting fluids say no!

Try and try again.

Planetary Explorer testing a new model.

Image by the author using ChatGPT-5.

7 Turbulent flow and Model 5

The aim of this section is to build a Model 5 that will resolve the systematic overestimation error

made by Model 4. This proceeds in four steps:

7.1) Identify the source of the error — the onset of turbulent flow — based in large part upon its

dependence upon Reynolds number.

7.2) Review historical analyses that document pressure/velocity correlations in laminar and turbulent

pipe flows.

7.3) Use historical analysis to estimate a turbulence-enhanced effective viscosity that may be used

within the laminar flow framework of Model 4.

7.4) Test the resulting Model 5 against observations.

7.1 The inferred source of the overestimation error

The error made by Model 4 has a telling geography, being most apparent for the largest Rex, greater

than about 7000, Fig. 10, left. A clear example of this comes from the three experiments of Fig. 5

that showed dependence of Q upon viscosity (due to different water temperature). The two
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experiments having cold and room temperature water sampled 2000 ≤ Rex ≤ 7000 and were

predicted fairly well by the laminar flow Model 4, Fig. 12. The hot water experiment sampled

4000 ≤ Rex ≤ 17000 and in that range the Model 4-predicted transport exceeds the observed

transport by an appreciable fraction, up to 35% at the largest Rex. This discrepancy easily exceeds

the uncertainty on observed Q, and it is systematic, a similar pattern is evident in other experiments

that sampled larger L/d and Rex. The upper Rex limit for validity of the laminar flow Model 4

appears to be roughly Rex ≈ 7000. Using Eq. (30), this corresponds to an internal Reynolds

number, Re = Va d / ν = (Q /Q0) × Rex = 0.35 × 7000 ≈ 2500, where Q /Q0 = 0.35 has

been read from Fig. 12. A transition from laminar to turbulent flow at roughly this internal Reynolds

number is consistent with well-known stability properties of pipe flow.19 20 Below Re ≈ 2000, a

laminar pipe flow will be stable, unless strongly perturbed by an outside agent; above a Reynolds

number of about 3000, a laminar pipe flow will be unstable and likely to become at least

intermittently turbulent. The overestimation of transport by Model 4 thus appears to be linked to the

occurrence of turbulent flow.

Turbulence continually mixes higher velocity fluid from the central core of the pipe into the

boundary layer on the pipe walls. In a laminar flow the same process occurs by the generally much

slower mechanism of molecular diffusion of momentum. Turbulent flow thus results in a higher wall

stress than is found in the corresponding (same transport) laminar flow. For a given pressure

difference, turbulent flow thus leads to reduced transport, which can be observed directly in Fig. 12

where the transport is nearly independent of Rex at larger values of Rex. In contrast, if the flow was

laminar, then we would expect a more or less linear increase of Q with Rex, Eq. (36), which is

evident in observations made at smaller Rex.

7.2 Historical, experimental observations of pipe flow

There are significant engineering and economic consequences that follow from the increased flow

resistance caused by turbulence, and the related phenomena have been studied intensively for more

than a century and a half.21 And yet, as Richard Feynman noted in the 1960s, ”What we really can

19 An excellent introduction to turbulent pipe flow (and fluid mechanics generally) is the text by White, F. M. and H. Xue,

2021, ’Fluid Mechanics’, 9th Ed., McGraw Hill.

20 When discussing a change from laminar to turbulent flow it is almost irresistible to speak of a ’transition to turbulent’

flow, as done here, even though what actually happens in these experiments is a change in time from (in some cases) turbu-

lent flow to laminar flow as the surface height, h, and the actual velocity V a decrease. This propensity for ’transition to tur-

bulence’ may be partly alliteration, but also conceptual; it is much easier to envision going from a known state, laminar flow,

into a chaotic state, turbulent flow vs. the other way around. Stability studies must proceed that way. Does it matter which

way the transition goes? Is their hysteresis? Probably yes, especially when, as here, the Reynolds number is not far from the

transition region.

21 If turbulence is a new or unfamiliar concept, then a highly relevant, must-see resource is the film by R. Stewart, ’Turbu-

lence’, available online at https://hml.mit.edu/ncfmf/
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Figure 12: Red, green and blue points
are the observed, nondimensional trans-
port Q /Q0 from the experiments of
Fig. 5 shown here as a function of Rex.
These three experiments are at a common
L/d = 140, but have different vis-
cosity due to different temperature. The
cyan line is the corresponding Model 4
prediction which overestimates the trans-
port at larger Rex. Notice the change
in the nondimensional transport at very
roughly Rex = 7000, which corre-
sponds to an internal Reynolds number,
Re = Rex (Q /Q0) ≈ 2500. This is in-
terpreted to be a result of a transition from
(somewhat) turbulent flow at larger Rex to
laminar flow at smaller Rex.
A better prediction comes from Model
5, the magenta line, that implements an
adjustment of the viscosity to account for
turbulent flow.

not do is deal with actual, wet water running through a pipe. That is the central problem which we

ought to solve some day, and we have not.” 22 By ’solve’, Feynman was contrasting the empirical

treatment of turbulent flows (coming below) with the Poiseuille solution from first principles that

solves laminar pipe flow. A great deal has been learned regarding the remarkably complex

phenomena that make up a turbulent pipe flow,23 which goes some way to explaining why we still do

not have (and may never have) a concise, understandable solution for turbulent pipe flow based upon

first principles. This strongly shapes the development of a model intended to account for turbulent

flow effects.

While we do not have a first-principles solution for turbulent pipe flow, what we do have is a

vast body of historical data and analyses. Many of these experimental studies came in response to the

practical need to predict the pressure drop, δP , that will be required to drive a given fluid at a

specified mean velocity, Va, through a given pipe. Dimensional analysis of this problem is

• A VPlist for the pressure drop along a pipe:
(50)

1. pressure drop expressed as a hydrostatic head, g h
.
= [ 0 2 -2 ], the dependent variable,

22 R. Feynman, ’Lectures in Physics Vol. II’, 1964, Addison-Wesley.

23 An excellent, comprehensive review of the research on turbulent transition is by Avila, M, D.

Barkley and B. Hof, 2023, ’Transition to turbulence in pipe flow’, Ann. Rev. Fluid Mech., 55, 575-602.

https://doi.org/10.1146/annurev-fluid-120720-025957
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2. mean velocity, Va
.
= [ 0 1 -1 ], an independent variable,

3. diameter of the pipe, d
.
= [ 0 1 0 ], a parameter,

4. kinematic viscosity of the water, ν
.
= [ 0 2 -1 ], a parameter,

5. length of the pipe, L
.
= [ 0 1 0 ], a parameter.

Three nondimensional variables are expected, and as one possibility,

g h

V 2
a / 2

= f(
L

d
, Re), where Re =

Va d

ν
. (51)

This is a complement to the problem of viscous pipe flow discussed in Sec. 6.1 insofar as Va and

pressure have switched places — here in (51), Va is the known, independent variable, and pressure

(g h) is the unknown, dependent variable. Thus the Reynolds number of (51) is the internal Reynolds

number, Re, rather than the external Reynolds number Rex used extensively in Sec. 6. Since pressure

is the dependent variable, it has been kept to the first power, and so Va is quadratic in this relation.

If the flow within the pipe is independent of distance downstream (fully developed) then the

pressure drop should be directly proportional to the pipe length, L. If so, then the parameter L/d

may be taken out of the argument of f and included as a multiplying factor. This gives a widely

used, simplified form

g h

V 2
a / 2

=
L

d
f(Re ) (52)

The unknown function of (52) is denoted by f , which is traditional in this role, and called the

friction factor or oftentimes the ’Darcy’ friction factor. The function f(Re) has been the object of

hundreds of experimental programs, and the results distilled into a Moody diagram, a simplified

example is Fig. 13.24 There is no doubt about the practical value of the Moody diagram, but the

physical interpretation of f itself does not go very deep. f is not a model of turbulence, but rather an

empirical measure of flow resistance, larger f corresponding to greater resistance. f is also not a

fluid property but rather a joint property of the fluid, the flow and the pipe, organized by the

dimensional analysis that lead to Eq. (52).

One part of the Moody diagram is clear and even familiar. In the low Re laminar flow regime,

the Poiseuille solution gives

f(Re)laminar =
64

Re
, (53)

the blue line at left of Fig. 13. The higher Re turbulent flow regime is different and more interesting.

One classical representation of f(Re) for turbulent flow in a smooth pipe is the red solid curve at

24 Estimation of the wall stress in real pipes often has to account for the surface roughness of the pipe wall. If the height

of the roughness elements is ε, then the roughness will appear in Eq. (51) as a nondimensional parameter ε / d. Moody di-

agrams generally display f(Re) with ε/d = constant on a near-blizzard of curves that sit above and are more or less

parallel to the curve for smooth pipes, the solid red line of Fig. 13; larger roughness results in larger wall stress. The ’pipes’

used in the present experiments were new and clean and presumed to be smooth, and so roughness is neglected here; thus the

somewhat impoverished Moody diagram of Fig. 13.
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lower right, an empirical correlation of experimental data analyzed by Blasius in the 1910s,

f(Re)turbulent =
0.316

Re1/4
. (54)

In what follows it will be necessary to have a function f(Re) defined over the full range of Re. The

presumption here is that f(Re) follows the Poiseuille curve (53) for small Re until intersection with

the Blasius curve Eq. (54) at Re = 1200. It continues as the Blasius curve thereafter. There is no

special treatment within the transition region.25

The data from the present experiments may be used to evaluate f(Re) using Eq. (52), and gives

an interesting result, Fig. 14. The distribution is consistent in part with the historical data insofar as

many of the experimental data fall close to the historical curves. That is reassuring; our little

table-top apparatus is not highly anomalous, and so the results and broad conclusions reached here

should be representative of pipe flows generally. But there are also many estimates of f that are well

away from the historical curves, all in the direction of larger f . These high estimates are not

measurement artifacts, but likely due to any one of several physical processes that are not accounted

by a classical friction factor: surface tension (for very short pipes), entrance effects (for short pipes)

which violate the fully-developed flow restriction,14 and hysteresis (turbulent to laminar transition).20

Each of these phenomena would be expected to enhance the flow resistance for a given Re. Surface

tension was treated briefly in Sec. 4, but the latter two phenomena are beyond the scope of this study.

7.3 Estimating an effective viscosity for use within a laminar flow framework

To make use of the essential information provided by the historical f(Re), the laminar plus turbulent

curves of Fig. 13, the tactic will be to map f(Re) into a so-called effective viscosity, νe. The

intention is that νe will account for turbulence-enhanced flow resistance within the framework of

Model 4. The question is — for a given Re and a given pipe, what value of an effective viscosity, νe,

will give a transport (or Va) consistent with the f(Re) of Eq. (54)? From (52) it appears that

Qturbulent ∝ 1

f
1/2

turbulent

within the turbulent flow regime, and from the laminar (Poiseuille) solution it is clear that

Qlaminar ∝ 1

flaminar
∝ 1

ν

25There are a number of more complex formulae that serve to connect smoothly the laminar and turbulent flow branches

within the transition region.19 A single, continuous function f(Re) is desirable, but the differences compared with the

present, simplified two-piece version are found to be very small.
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Figure 13: The friction factor, f , as a
function of the internal Reynolds num-
ber, Re. The blue line at left comes
from a laminar flow, i.e., Poiseuille’s
solution. The red curve at lower right
is the Blasius fit to turbulent flow in a
smooth pipe. The dashed, magenta line
is the viscosity ratio computed from Eq.
(56) and the constraint that νe/ν must
be greater than 1. The light red shading
indicates the transition region, the range
of Reynolds numbers, very roughly
2000 - 3000, at which a laminar flow,
if gently accelerated and not subjected
to large amplitude perturbations, would
likely show signs of instability and a
transition to turbulent flow. In practice
there is not a sharp boundary on the
transition region, and neither is there a
clear consensus on f(Re) within this
region.
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Figure 14: The friction factor, f(Re), eval-
uated from the present experimental data,
the red and green dots. The blue and red
lines are as in the previous figure. The red
dots represent data at smaller values of
h/hσ , likely affected by surface tension,
and at smaller L/d that may be affected by
entry length.14 Neither of these phenom-
ena is accounted by a friction factor, and
it is not surprising that the red points are
widely scattered. The distribution of the
green points (all the rest of the data that are
at larger h/hσ and L/d) forms a cloud that
is slightly above the historical curves and
that more or less conforms with the change
in slope of f(Re) that is expected in the
transition from laminar to turbulent flow at
very roughly Re ≈ 2500.
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within the laminar flow regime. These will be consistent if

νe

ν
=

√

fturbulent

flaminar
, (55)

the dashed magenta line labeled viscosity ratio in Fig. 13. A handy version of this comes from

substitution of (53) and (54) into (55),

νe

ν
= 7 × 10−2 Re3/8, and, νe/ν ≥ 1. (56)

Eq. (56) may be evaluated for any Re ≥ 0, but it is required that νe/ν must be ≥ 1 on the basis

that turbulence (or any other disturbance) will only make the effective viscosity larger than is the

physical fluid viscosity, ν.

Implementation of an effective viscosity starts with a solution of Model 4. If that solution gives

Re ≤ 1200, then the flow is presumed to be laminar, νe = ν, and nothing more need be done. If

instead Re ≥ 1200, then the effective viscosity νe is evaluated from (56), and the solution

recomputed with ν = νe. This first estimate of νe will be somewhat too large since the Model 4

estimate of Re will be too large. The solution is therefore iterated to arrive at an internally consistent

solution in which the model-computed f(Re) approximates the historical f(Re). In all of this, the

Reynolds numbers are evaluated with the actual fluid viscosity, ν, not the effective viscosity.26

It is important to understand that the so-called effective viscosity estimated by (56) is not a

directly measurable, physical property of the fluid (the same thing was said earlier of f). Rather, νe is

a modeling device, or in modern vernacular, a modeling hack, that allows the import of the historical

laminar and turbulent flow relationship f(Re) into the laminar flow framework of Model 4.

7.4 At last, Model 5

Model 5 is defined by the effective viscosity relation (56) and the algorithm to implement its use in a

laminar flow framework. Over most of the parameter space of these experiments the effective

viscosity is less than twice the actual fluid viscosity, the dashed magenta curve of Fig. 13. The

consequences for the model-computed transport are significant at large Rex, compare the Model 4’

solution with the Model 5’ solution in Fig. 10, but are not qualitative.

The mapping of f(Re) to νe(Re), Eq. (56), should be regarded as a hypothesis, and not a

fundamental law derived from first principles: it might work or it might not. Significantly, (56) is a

testable hypothesis having consequences that we can readily check against observations. The changes

26A Matlab script that implements Model 5 is linked in Sec. 8.
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in transport that result from an increased viscosity (νe > ν) are in a direction that reduces the positive

bias of Model 4, an example is in Fig. 12. The Model 4 solution begins to depart noticeably from the

observations at Rex ≈ 7000, while the Model 5 solution is closer to the observations, though still

slightly high. When the solution of Model 5 (including surface tension) is compared directly to the

entire dataset (no exclusions; the blue dots of Fig. 11), the coefficient of determination is found to be

R2 = 0.95 and hence Q5 accounts for 95% of the variance in Q. The root mean square of the error,

Q − Q5, is 0.05 (nondimensional units), and the mean of the error is -0.008 (also nondimensional).

The sign indicates that Q5 is slightly higher than the data, on average, though the bias is much

reduced compared to the bias of the Model 4 solution.

Model 5 appears to be empirically adequate over the rather small parameter space and given the

limited precision of these experiments (small when compared to the immense range of possible pipe

flows alluded to at the end of Sec. 2.1). The remaining differences between Model 5 and the present

dataset give scant motivation or direction for further development and so we have come to the end of

the development path previewed in Fig. 1.

7.5 Closing remarks

Recall that in Sec. 1.2 there was mention of two desirable traits in a model, clarity (or

understandability) and adequacy to the phenomenon and data of interest. These are likely to be in

tension: here it seems that Model 4 is understandable, and Model 5 is adequate to the data. Now it’s

time to add one more hurdle for the study overall, viz., we shouldn’t feel comfortable with a model,

and should not be confident applying that model, unless we understand where in parameter space the

model will fail. The present dataset is not extensive enough to reveal the limits of Model 5, but we

can be certain that there are such boundaries, and they may not be too far away. The most likely

point of failure is the relation (56) that maps f(Re) to νe. And specifically, without understanding the

physical basis for the Blasius correlation Eq. (54) and its application here, there is no sound basis for

trusting Model 5 solutions outside the range of Re that was sampled here.

A more precise and robust experimental apparatus that allowed greater temporal and volumetric

resolution would be highly desirable (see Rother, 2024, of footnote 1). One of the most useful

improvements would be a taller tank that would permit larger outflow velocity and larger Reynolds

numbers than were reachable with the very modest apparatus used here.

7.6 Problems

• The changes made by the implementation of an effective viscosity are evident in the shift of
predicted transport closer to the one-to-one line in Fig. 11 (red dots, Model 4, to blue dots Model
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5). The change is most evident in the middle range of transport values. Can you explain why this
is the case?

• Up through Sec. 6 the essential nondimensional parameter was the external Reynolds number,
Rex. Then in Sec. 7 that role was taken by the much more often encountered (just plain) Reynolds
number, Re, dubbed the internal Reynolds number in Sec. 6. Can you explain why the sudden
changeover from Rex to Re, aside from historical precedent?

• Fig. 6 was (probably) difficult to appreciate on first sight. What can you now understand of it?

i) What parameter space is defined by the coordinate axes of this figure? What is the parameter
space sampled by the observations? What part of the figure’s parameter space was inaccessible to
the experiments? (hint: think Venn diagram).
ii) Where is there evidence of a surface tension effect? Why not in other data?
iii) Where in this figure is the most obvious evidence of a viscous drag effect on a laminar flow?
iv) Why does the (inferred) surface F (L/d, Rex) flatten out at large Rex and large L/d?

• Farewell, Explorer.

Off to find new worlds.

With Earth’s gift of fresh insight,

She will make her way.

With business finally finished (tank drained) and with a
backpack full of new codes and diagrams, Planetary Ex-
plorer blasted off in search of new planets and adventures.
Soon she discovered a new and somewhat barren planet,
and most surprising, another tank-draining project. There
were two obstacles not encountered on verdant Earth: no
Matlab and no internet. Assuming that the local gravita-
tional acceleration g can be measured independently, how
might the diagrams of this appendix be used to predict the
gravity-driven outflow rate on this new planet? Planetary Explorer blasting off.

Image by the author using ChatGPT-5.

• Advanced exploration for Earthlings. At the outset of Sec. 6 a dimensional analysis was applied
to pressure-driven, viscous, fully-developed pipe flow. Repeating the VPlist for convenience,

Pressure-driven transport of a fully-developed, viscous pipe flow: (33r)

volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

pressure gradient, ∂P/∂x
.
= [ 1 -2 -2 ], an independent variable,

radius of the pipe, r
.
= [ 0 1 0 ], a parameter,

dynamic viscosity, µ
.
= [ 1 -1 -1 ], a parameter.

This VPlist yields a basis set having just one nondimensional variable that must be a constant,
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Q µ

r4 ∂P/∂x
= constant. (34r)

The result (34r) has the form of Poiseuille’s linear, laminar solution, in which transport is directly
proportional to the pressure gradient. In this Sec. 7 we have seen that the transport of a pipe flow
may also depend upon the properties of the flow itself, whether laminar or turbulent. Where in
(33r) is the possibility of turbulence? Or said a little differently, why is a linear, laminar flow
guaranteed by this specific VPlist?

The VPlist (33r) included a small choice that had larger consequences than might be anticipated.
The parameters pressure gradient and dynamic viscosity both included the dimension, mass. Fair
enough, they usually do. But since the dependent variable was taken to be the volume transport,
Q, which does not contain a mass dimension, then the viscosity and pressure gradient were bound
to appear in the resulting basis set as their ratio, call it α = µ (∂P/∂x)−1, and α

.
= [0 1 1]. The

VPlist (33r) had, in effect, only three independent dimensional variables, Q, r and α, and just two
dimensions, length and time. This implies that there will be only one nondimensional variable, as
there is in (34r), which is consistent with Poiseuille’s solution for linear, laminar flow. In other
words, there is no allowance in the basis set (34r) for a turbulent flow in which transport is not
directly proportional to the pressure gradient.

Let’s try an experiment: starting with the VPlist (33r), divide the dynamic viscosity by the fluid
density to get the kinematic viscosity, and similarly for the pressure gradient to recast as an
acceleration. We are not concerned in this study with the possibility of a variable fluid density,
and so these choices should be acceptable, physically.

Pressure-driven transport of a fully-developed, viscous pipe flow, omitting mass:

(57)volume transport, Q
.
= [ 0 3 -1 ], the dependent variable,

pressure gradient acceleration, (∂P/∂x) / ρ
.
= [ 0 1 -2 ], an independent variable,

radius of the pipe, r
.
= [ 0 1 0 ], a parameter,

kinematic viscosity, ν = µ/ρ
.
= [ 0 2 -1 ], a parameter.

There are four members in the revised VPlist, just as before, but now with only two dimensions,
length and time. Compute the basis set of nondimensional variables and find two members,

Q

dν
= F (

d3 ((∂P/∂x) / ρ)

ν2
), (58)

a nondimensional transport that is equal to an unknown function of a Reynolds-like number. This
revised analysis can accommodate turbulent flow and laminar flow, and yet it has sprung from a
reduced and seemingly simpler VPlist compared with (33r).

Below are some experiments that will help fill out this discussion. The repeated null space
calculations implied here are best done with Matlab or Python codes linked in the next section.

i) Starting with the VPlist (33r), change the dependent variable to mass transport,
Qm

.
= [ 1 0 − 1 ], but leave all else the same. This is the complement to the example worked

above in the sense that all possible instances of mass are included in the VPlist. Compute the
nondimensional basis set, and compare with Eq. (34r).

ii) Starting with the VPlist (33r), replace the dynamic viscosity with kinematic viscosity (as if
dividing by a constant density) but leave all else as is. This will not go well to the extent that the
nondimensional basis set will have to omit the pressure gradient, the motive power for the flow.
What went wrong?
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iii) There are several more variations on this mass in or mass out exercise, and it is revealing to
approach them systematically. Start with the VPlist (33r), and set plausibility aside. Allow that the
three variables Q, ∂P /∂x, and µ can appear either with or without division by density; r
continues along unbothered by all this. How many unique combinations (mass on, mass off for
each relevant parameter) are there in this ensemble of VPlists? We have already considered two of
them in i) and ii) above. How many of the ensemble VPlists will fail to give a sensible result, as in
case ii) above? How many give the Poiseuille result, Eq. (34r)? How many give that F = F (Re)?
Now allow physical reasoning back in. Which of the VPlists and solutions are the least arbitrary?

iv) Starting with the VPlist (33r), include the fluid density as a fifth member of the VPlist.
Calculate the nondimensional variables of this augmented VPlist, and explain how your new result
compares with Eq. (34r).

What’s the moral of this short story / long problem? Because VPlists do not include much
information to begin with, even a small and seemingly incidental omission or addition can have a
qualitative effect on the result. As well, there is binary-like property to a VPlist; a parameter is
either in or out, with no gradation for just a little effect of mass, for example. With that in mind, it
is good practice to regard every new or unfamiliar VPlist as provisional, and to experiment with
plausible variations to see if something unexpected may emerge.

8 Housekeeping

Attribution: The experiments, the models and codes, the text and the technical figures were made by
the author. The Planetary Explorer images were created by the author using ChatGPT-5.

Acknowledgements: Administrative assistance was provided by the Dept. of Physical Oceanography,
Woods Hole Oceanographic Institution.

Links to codes and data:

The calculation of a null space basis may be done with
Matlab: https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/06/DanalysisA2.zip

Python: https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2024/10/DA2Python.zip

The experimental data, the models and a Matlab script to exercise both are available at
https://www2.whoi.edu/staff/jprice/wp-content/uploads/sites/199/2025/12/DA-tank.zip

There are four files:

• Dstruct.mat, a Matlab structure that stores all of the experimental data.

• DAtank.xlsx, same as above but in an Excel table file.

• Model5.m, a Matlab function that evaluates Model 5, and with the appropriate settings, Model 4.

• Dplot.m, a Matlab script that loads Dstruct.mat and makes several plots of the data, including a
3-dimensional version of the present Fig. 6 along with model predictions.
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