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[SQUEAKING] [RUSTLING] [CLICKING]

GILBERT

STRANG:

This lecture is-- applies to every matrix. And it comes, really, near the beginning of linear algebra.

Elimination is the powerful way to make the matrix simpler. Get a lot of zeros in it is what is actually achieved by
elimination. But then it's a little question. What have I done? How do I describe the answer? And I think
factorization, which you'll see are the fundamental theme in linear algebra, are-- give a great description of
elimination. You can see what you've done.

And this factorization takes any matrix A, any rectangular matrix, square or rectangular, and finds a column
matrix and a row matrix that multiply. So it's maybe the first of our six factorizations that really organize the
linear algebra course. So we're ready to start on this. So elimination is familiar. But this factorization is more-- is
newer.

So I'm going to take an example. There is a matrix A, three-by-four, pretty arbitrary matrix. And I want to do
elimination to it. Let me just describe elimination, how it would start in words.

I would say, I want to turn that 3 into a 0. So I take 3 times row 1 and subtract from row 2. And that gives me a 0
there. And it gives me something else. And I take 4 times row 1 from row 3. And that gives me a 0, I think.

This is the process that you repeat, multiples-- and the subtractions can go upwards here. After I've taken three
of these away from row 2, I have a new row 2. I can take some multiple of that row 2 away from row 1 and
produce that 0.

I don't plan to discuss all the horrible details of elimination right here, just this-- but I'll tell you the operations.
And for this matrix, I end up with that matrix. This is what elimination goes to if we go the whole way. We get a
couple of columns.

So how do I understand this matrix Z, which came from A? Well, let's see. If I look at the rows, I see two nonzero
rows. And that turns out-- they turn out to be a basis for the row space. The combinations of those two rows give
me any-- all of the three rows of A.

And notice that there's a 0 row. So the rank is only 2 for this matrix. This matrix has only two nonzero rows in--
when-- after-- at the end of elimination. And so they're a basis for the row space, which is two-dimensional.

And the columns, the first two-- so the first two columns here are-- that's the destination. That's the goal of
elimination, to get these ones and zeros. So they tell us that these two columns were-- and we'll call those-- those
are the first independent columns.

These columns are independent of the previous ones. But the last two columns are combinations of the first two.
So the column space of this matrix is the same as the column space is-- sorry, has the same basis, the same-- we
learn about the column space of this matrix from the column space of this one.

So that's point two. The columns of A, these first two columns, are a basis for the column space of A because they
became, clearly, the basis when we went to Z.



And finally, the null space-- if we want to solve Ax equals 0, we-- this makes us-- this moves us to solving Zx
equals 0. That null space is-- null meaning 0 and that-- on the right-hand side.

So to solve Zx equals 0 is easy. And we'll do it in a minute. And that will be the same solutions as Ax equals 0. So
that's what elimination achieves. These subspaces have-- move in a simple one-- simple form, are connected in a
nice way from A to Z.

Ready for the next slide. And I make it happen. And now my new point is to see that elimination process, which
has been taught in linear algebra for quite a long time. I want to see it. This step from the A that we started with
to the elimination matrix that we ended with tells me that this original matrix factors into a column matrix times
a row matrix, C times R.

That'll be then the first factorization in the linear algebra textbook. It comes first. And then the great
factorizations of linear algebra, like eigenvalues and singular values, are-- build out of this. But this is a
factorization.

Every matrix A factors by doing that elimination into the column matrix. It has two independent columns, just as
A has. And it has two independent rows, just as A has. And what does that tell us?

That tells us that 2 equaling 2 there-- that the column rank and the row rank are the same, which is really the
first wonderful fact in linear algebra-- that if I take any matrix-- and if you just glance at that, you can't see how
many rows are independent, how many columns are independent. But the number is 2 in both cases, always
equal.

Now I have to explain-- use matrix notation to say what that R matrix is. So I start with A. I'll always use little r for
the rank, the number of independent columns. And you remember that those go into C.

So I'm just able to tell you what the R factor is. So that's maybe the key idea here that's not usually in textbooks.
What is that R? Well, it starts with the identity matrix. And then it has a matrix F that accounts for the dependent
columns.

So the identity matrix is sitting in the columns that are independent in A, the first little r columns, the
independent columns, and then the F matrix. So the F matrix-- the matrices there are dependent on the columns
in C. And that tells us that they're a combination.

So what's there is those columns of the matrix A have the form C times F. So F is the matrix that makes this
correct. And annoyingly, there-- we may need to reorder the columns because in my nice example, the
independent columns came first, columns 1 and 2. But I could-- if I moved those off to the right, then I need to get
them back to the left again for my nice picture.

And that permutation P that does it-- don't pay a lot of attention to P. Here's the important part-- the independent
columns and then the matrix that tells us how to get the dependent columns from the independent columns by
multiplying by F.



So that's the factorization. And now I want to use it. I did an example that involves P that requires a permutation.
It's a good example to look at. So there's our original matrix A. And if I look for the independent columns, well,
column 1 is great. Column 2 is not so great because it's dependent. It's just 2 times column 1, nothing new in
column 2.

So that's a dependent column. And then column 3, we do have an independent column. So the two independent
columns go into C. And that's the matrix that multiplies R. And you see how a permutation in this form-- the
identity is over on the-- fully on the left side-- that this has columns 1 and 2 as special.

But it's the permutation then that makes columns 1 and-- puts them into columns 1 and 3, which are really the
special independent columns for A, that and that. So that's just a word about P. And from now on, I'll try to forget
that there might be a P matrix.

The essential information-- what does elimination accomplish after all these thousands of years? It was invented
in China more than 2,000 years ago. The information it is-- it tells us which columns are independent there in the
identity matrix-- shows up in those columns. And it also tells us the matrix-- how the dependent ones come from
the independent ones.

You multiply C by some matrix F, which elimination finds. So elimination finds all these matrices, as we saw in
that example. And now I want to use that to see what that matrix, right down here with a slide or two-- just
exactly what steps of elimination are allowed.

So elimination has three simple steps. And all of them are reversible, like exchange two rows because if I had a 0
in the top left corner, I wouldn't want that. So I would do a row exchange. I can divide a row by a number. If I had
a 2 in the top left corner, I'd rather have a 1. So I just divide that row by 2.

And this is the main step to subtract a multiple of one row from another row. That doesn't change the row space,
just changes the rows themselves. But their combinations have not changed.

All these three steps are reversible. If I exchange two rows, I could exchange them again. And I'd be back to
where I started. If I divide by 7, then I could multiply by 7, or divide by 1/7.

So this is what is always-- if you get this topic in a linear algebra course, this is the matrix that you get to. And
what I want to do is understand that matrix as coming-- as entering a factorization of A. So I can use elimination.
But that's the picture of what I get, as we saw.

This is the key fact. We're ending the work of elimination. It will find out how many independent columns there
are, how many independent rows. And that number is the same because we're looking at the identity matrix. And
then we see this is the simplification of the matrix A.

So what can we do? What do we learn from that? So I put in a few slides just to say how would you code
elimination. And it's really neat. How does elimination work? Well, column by column.

So suppose we have got k columns done and we're ready for the next one. We may have seven columns taken
care of. We're ready for column 8. So this is what column 7 looks like because it's that same I, F, 0, 0, P picture.



Those seven columns are finished. And now here's one. And I let u be the upper part, upper half, and l be the
lower half. U is the half that's or the part that's of the new column that's-- that goes up at the top. And even with
the zeros goes l.

So what do we do? And what does the elimination do with this next column? So I'm describing elimination, again,
in a way you would code it. I come to the new column. And I want to know-- I want something, a picture like this,
with k moved up to k plus 1.

It's a lot to give you the-- all the details of elimination. But everybody catches on to them by doing a few, either
on a computer or by hand. So our question is, this is-- I want a picture like this after-- with one more column in it.
And the question is, is this new column going to feed into the identity?

Well, if l is the zero vector, if it's all zeros below the pivot, then this u will go along with F because we're not
getting anything new. We still have k nonzero rows. So at this point, we have k nonzero rows, or let's say
whatever number we have. And if l is 0, then the new column is dependent on the old columns and doesn't add
anything new.

Again, I'll just repeat. If l is the zero vector, if I'm all zeros here, then that will go in with F. If it's not all zeros
there, then I'm going to do some row exchanges and some pivot steps. What I can do is clear out all of l except
for one nonzero. That will be the new pivot. Maybe the next-- I hope the next--

So if l is all zeros, the new column joins with F. If l is not all 0, the new column is independent. So we've hit
another independent column. And we do elimination on that column to get it into the right form to be ready for
column-- column k plus 2 is coming next.

The way to learn the steps of elimination is to do them on a few matrices. And I won't do more here. But I want
you to know what is elimination telling us. So the result of elimination tells us which are the first independent
columns. They're the ones that end up with a 1, with the identity matrix. And those first columns back in A are
the columns of C.

The row space is not changed. Those operations of elimination don't change the row space. But they give us a
nice picture. So this thing is-- this slide is really telling us that the result of elimination is the identity matrix, the
C matrix, and zeros in the lower rows. We can see how many rows are independent by how many-- the nonzero
rows are all independent because that identity is-- makes that. So that's where we are at the end of elimination.

We have little r, the rank. The dimension of the row space, the dimension of the column space, is little r. And we
can see the basis for-- in C. And then we also have that matrix F. So we got to C and F. And elimination finished
by giving us a picture of the original matrix much simplified, lots of zeros.

And let's just apply it. So here we go. This is the payoff. Do you remember our matrix that had 1, 3, 2, 7? That
was my example at the very beginning. But it had some combination of those two rows. So its third row I've just
forgotten because it turned out to be a combination of these and gave us a row of zeros.



So these are the two equations in Ax equals 0. We're looking for the null space. This is what elimination is-- tells
us how to do. It's a step to simplify the equations from that messy-looking two equations to this simple pair of
equations where the 1 and the 1 are in columns 1 and 2 and nice numbers. And the point is you can solve those
without taking a linear algebra course. But still, take the course.

So I'm looking for solutions to that. So I could find a solution if I set x3 to be 1 and x4 to be 0. So x4 is 0. That's
gone. x3 is 1. So x1 plus 3 equals 0. x2 plus 4 equals 0. So x1 and x2 are minus 3 and minus 4. And there's the 1
and the 0.

Did you see that we produced that solution? Just by eye, it jumps out. And let's see how the next one jumps out.
So we suppose we take those equations. Those are the simple form of this horrible, horrible pair. We got it to a
very simple form. And now I want to know another solution.

And another different, certainly different, one will be to set x3 equal to 0. So that's gone. x4 equal to 1-- so that's
5 and 6. And then I need x1 to be minus 5 and x2 to be minus 6 to cancel the 5 and 6. Golden-- solution simple,
solution complete.

So I've got two solutions to Ax equals 0 and the null space as the right dimension 2. And I've found a basis for
that space. And all other solutions are combinations of these simple solutions. The simple solutions have zeros
and ones in the dependent columns.

I hope you can just see that after elimination, when we get to a simple form like that, it becomes a picnic to solve
it. The equations are easily solved. Just let x3 equal 1 and x4 equal 0, and you get an answer. Let x3 equals 0 and
x4 equal 1, and you get another answer.

So that's the point of elimination. It's good to make the-- what the point of learning this process or coding up this
process. I have to admit that it's not the most super efficient way to find the solution because it involves
subtraction of rows from rows above and as well as subtraction from rows below. So it could be speeded up. And
it usually is for square invertible matrices.

Let me ask you this question. If I had a square four-by-four invertible matrix, what would-- over here, what would
be the reduced form after I do elimination? Well, it would just be identity, the identity matrix.

If I had a four-by-four-- if I have an invertible matrix, elimination produces the identity matrix. So it really goes all
the way to simplifying the matrix. And you pay a little price if-- to get all the way to the identity matrix.

But to see the theory, it's a right thing to do. We wouldn't actually do it. We would stop at a triangular matrix and
start solving from that point if we had to pay for the computer time.

And now here, I've written in with matrix notation what that last slide showed you. And again, what that last slide
showed you is that once you have it-- have completed elimination, it's a cinch to solve Ax equals 0. Elimination
puts A into that form. And then the solutions x are in this form. And if I multiply that by that, I get 0.

So the columns of x solve Ax equals 0. I have found the null space. I've computed the null space. And what I
wanted to do was to show that elimination does its job, makes it simple. It makes the null space jump out. You
just need the F that comes from elimination, the possible permutations, and you've got the answer. You've got
the x's that solve Ax equals 0.



Again, it's not the code that's used all the time in computing problems in physics or engineering. But it's-- for
math, it-- elimination-- completed elimination, as we've done, really-- gets you to the point where you can read
off the answer.

So that's the point, really-- is to see how far elimination gets you. So here's a comment that I have just been
making. The method that we push all the way to get the identity matrix is not as efficient as Gauss-- Gauss, the
greatest mathematician of all time. He knew enough to stop when the matrix was triangular instead of getting to
a matrix that's-- could well be diagonal.

He doesn't do the subtractions from upper rows. He just goes from-- subtracts multiples of a row from lower rows.
And that makes the matrix triangular. And then solving is easy. So-- just want you to-- and that's the steps that
you-- really, everybody learns in linear algebra, elimination from the matrix, from a square matrix to a triangular
one. And then solution is a cinch.

I'm near the end. I just want to express what I did in matrix notation. Actually, that's the fundamental idea of this
lecture that I'm-- extra lecture on elimination-- is to see what's happening in matrix language. We know if you
take the course and you grind through a few examples of elimination, then you know the steps.

This lecture is about sit back, don't panic with each step. But what's the big picture? And the big picture is that
you started with a matrix like this. So you see it's a matrix with submatrices.

The rank-- this matrix W here is the-- is square. And it's full. If the whole matrix A has r independent columns and
r independent rows, then we move them into this position, W.

So I want to start elimination again. You'll see I'll get it in one quick line. I want to start-- think about elimination.
But let me suppose that I'm starting with a matrix like my example that has a square invertible matrix there.

And what does elimination do? What does a-- well, we know that this is the result. So this is what goes in. And
this is what goes out, just two-by-two block matrices. I call them a block matrix because these are blocks of
numbers, not just single numbers.

Of course, to understand the picture-- quite good to take just single numbers. We might have the numbers 3, 7,
6, 11, something like that. And what does it reduce to? And the point is elimination. We get the identity matrix. W
goes to the identity matrix.

So elimination is really inverting-- finding the inverse of W. That's what elimination is doing. And that was my
goal, to find out what the heck is elimination doing as I take all these steps. What it's doing is it's finding-- it's
inverting that matrix W. But of course, it's operating on whole rows.

The subtractions from down here leave zeros. And the steps up here multiply the W by its inverse to leave the
identity. This is what we recognize. That's the r matrix after elimination.

If there are dependent rows, they turn into zero rows. The independent columns turn into-- start with the identity
after elimination. That's the whole point. That's the point of elimination, to get from a general matrix to that kind
of a matrix. And that's what it does. That's the row-reduced echelon form that elimination does. So that's really--
this is the simplest explanation I could give.



Now, you might say, wait a minute. This is assuming that W up in that left corner is a nice, square, invertible, full-
rank matrix. Then we go here. Suppose it isn't. Suppose I have a 0 up in the top left corner or something like that.
Then what do I do? Well, I do some row exchanges to get-- and maybe some column exchanges to get to this W,
to get to this invertible block-- pivot, you could call it, which turns into I.

So I have to-- so the next slide will show you the possible steps. I may have to use some permutation, some
reordering of the rows. You got to be up for those. It can have a reordering of the columns. And that will get it
into the-- into what we want. That gets it into what we want. And then elimination gets us where we really want.

So this is a-- this is-- we're at the end now. This is the picture of elimination where-- written in its simplest matrix
form. I do permutations of rows. I reorder the rows and the columns to get the first columns and the first rows to
be independent. And that means that they have an r-by-r matrix W that's invertible, then H and J or whatever
they are.

But then the next step of elimination-- the two jobs of elimination are get things in the right order and get zeros,
produce zeros. So here, I'm supposing that I get them in the right order there. And then I produce the zeros
there.

And I'll also produce a bunch of zeros in that identity matrix. And this is the F. This is our friend, F, which we're
giving-- we're shining a light in this lecture on this matrix F that got really ignored for 1,000 years.

So there you go. I'm not sure if we're through. I feel I'm through. I've-- see it says 14 of 16. So there must be
some brilliant ideas on the last things.

So interesting point-- a question is, where is that W, that matrix of-- that invertible r-by-r matrix that is the basis
for elimination, that W up in the corner? And the theorem is that if I find r independent rows, which there are in
the row space, if I find r independent columns-- so suppose the rows are in a row-- in a matrix B with r rows, the
columns are in a matrix C, as before, with r independent columns, then where B meets C-- can you see this on
my-- so B is coming along as independent rows. C is r independent columns.

And where they meet, I claim, is an r-by-r matrix that's invertible. It has independent rows and independent
columns. So for me, this was the real math principle that wasn't-- so I wasn't so sure about, but it works.

Just to tell you that the paper is in a journal called Mathematics Magazine-- it's almost published as I make this
recording. It's the Math Association of America. And then there's also a website that has a lot of math papers put
in there before publication. And they have some crazy-long number to identify them. But this is the linear algebra
textbook that uses this lecture.

Actually, this lecture is not in the textbook. It's separate because the-- I didn't want to fill the textbook by this
complicated thing where the idea is simple, where you simplify your matrix A by elimination. And then you can
read off all four subspaces and-- all four fundamental subspaces.

And the idea is to say, what is elimination actually doing to put in a little more of the details, which are in this
talk, but not appropriate for-- to-- necessarily to go into the textbook? So there it is. The paper that takes these
steps is in a journal that many libraries will take.



Well, thanks for your patience with this unusual step. I didn't know it was going to happen. But it just-- I was
never happy with elimination without having a matrix description. What happens with the matrix pieces of my
overall matrix A? And that's what this lecture was about.

So thanks for joining. And best wishes in linear algebra. It's a beautiful subject. Thanks.


