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  � � 
 A = CR =  Independent columns in C 

� � � � 
0 

A = LU = Triangular matrices L and U 
0 

� � � � 

A = QR = q1 qn Orthogonal columns in Q 
0 

S = Q�QT QT = Q−1 Orthogonal eigenvectors Sq = �q 

A = X�X−1 Eigenvalues in � Eigenvectors in X Ax = �x 
p 

A = U�V T Diagonal � = Singular values σ = �(ATA) 

Orthogonal vectors in UTU = V TV = I Av = ˙u 
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  
1 3 2 

 A0 = 4 12  8 
2 6 4 

 
1 

 A1 = 4 
5 

4 
1 
5 

 
2 
3  

5 

� 
2 

S2 = −1 

� 
−1 
2 

    
1 −1 0 2 −1 0 

    S3 = −1 2 −1 S4 = −1 2 −1 
0 −1 1 0 −1 2 
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� � � � 
cos θ − sin θ 3 0 

Q5 = A6 = 
sin θ cos θ 4 5 



= =

=

=

Column space of A / All combinations of columns 

= linear combination of columns ofA 

Column space of A C(A) all vectors Ax 

all linear combinations of the columns 

R3 ? 

The column space of this example is plane ? 

line ? 

Answer C(A) plane 

         
1 4 5 x1 1 4 5 

Ax =  3 2 5  x2  =  3  x1 +  2  x2 +  5  x3 

2 1 3 x3 2 1 3 
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Column space of A / All combinations of columns 

= linear combination of columns ofA 

Column space of A = C(A) = all vectors Ax 

= all linear combinations of the columns 

R3 ? 

The column space of this example is plane ? 

line ? 

Answer C(A) = plane 

         
1 4 5 x1 1 4 5 

Ax =  3 2 5  x2  =  3  x1 +  2  x2 +  5  x3 

2 1 3 x3 2 1 3 
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Basis for the column space / Basis for the row space 

    
1 4 

Include column  1 = 3  in C Include column  2 = 2  in C 
2 1 

      
5 1 4 

    DO NOT INCLUDE COLUMN 3 = 5  = 3  + 2 
IT IS NOT INDEPENDENT 3 2 1 

  � � 
1 4 1 0 1 Row rank = 

  A = CR = 3 2 0 1 1 column rank = 
2 1 r = 2 

The rows of R are a basis for the row space 
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A = CR shows that column rank of A = row rank of A 

1. The r columns of C are independent (by their construction) 
2. Every column of A is a combination of those r columns (because A=CR) 

3. The r rows of R are independent (they contain the r by r matrix I) 

4. Every row of A is a combination of those r rows (because A = CR) 

Key facts 

The r columns of C are a basis for the column space of A : dimension r 

The r rows of R are a basis for the row space of A : dimension r 
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Basis for the column space / Basis for the row space 

    
1 4 

Include column   1 = 3 Include column   2 = 2 
2 1 

      
5 1 4 

    DO NOT INCLUDE COLUMN 3 = 5  = 3  + 2 
IT IS NOT INDEPENDENT 3 2 1 

Basis has 2 vectors A has rank r = 2 n − r = 3 − 2 = 1 

Counting Theorem Ax = 0 has one solution x = (1, 1, −1) 

There are n − r independent solutions to Ax = 0 
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Matrix A with rank 1 

If all columns of A are multiples of column 1, 
show that all rows of A are multiples of one row 

Proof using A = CR 

One column v in C ⇒ one row w in R 
 � � 

w 

A =  v  ⇒ all rows are multiples of w 
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== ++ == −−

++

++

++

−−

−−

A = CR is desirable + A = CR is undesirable − 

C has columns directly from A : meaningful + 

R turns out to be the row reduced echelon form of A + 

Row rank = Column rank is clear : C = column basis, R = row basis + 

C and R could be very ill-conditioned − 

If A is invertible then C = A and R = I : no progress A = AI − 
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?? ??

      

If Ax = 0 then  
row 1 

:   x 
0 

 =  :  
x is orthogonal 

row m 0 to every row of A 

Every x in the nullspace of A is orthogonal to the row space of A 

Every y in the nullspace of AT is orthogonal to the column space of A 

N(A) ? C(AT) N(AT) ? C(A) 

Dimensions n − r r m − r r 

Two pairs of orthogonal subspaces. The dimensions add to n and to m. 
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Big Picture of Linear Algebra 

dimension dimension 
= r = r 

row column 
space row space to column space space 
of A of A Axrow = b 

Axnull = 0 90 ◦ 
Rn 90 ◦ 

Rm 
nullspace to 0 

nullspace 
nullspace of AT 

of A dimension 
dimension 

= m − r 
= n − r 

This is the Big Picture—two subspaces in Rn and two subspaces in Rm . 

From row space to column space, A is invertible. 
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− −
||||| ||||| |||||

− −

||||| ||||| |||||
− −

Multiplying Columns times Rows / Six Factorizations 

A = BC = sum of rank-1 matrices (column times row : outer product) 

   
∗ − c1 − 

 

| | | 
b1 b2 ·· bn 

 

 

 

∗ − c2 − 

: 
BC = = b1c 

∗ ∗ ∗ 
1 + b2c 2 + · · · + bncn 

| | | 
∗ − c − n 

New way to multiply matrices ! High level ! Row-column is low level ! 

A=LU A=QR S =Q�QT A=X�X−1 A=U�V T A=CR 
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Elimination on Ax = b Triangular L and U 

2x + 3y = 7 2x + 3y = 7 x = 2 

4x + 7y = 15 y = 1 y = 1 

A = 

� 
2 3 
4 7 

� 

= 

� 
1 0 
2 1 

� � 
2 3 
0 1 

� 

= LU 

If rows are exchanged then P A = LU : permutation P 
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Solve Ax = b by elimination : Factor A = LU 

Lower triangular L times upper triangular U 

Step 1 Subtract ℓi1 times row 1 from row i to produce zeros in column 1 

14/30 

    � � 1 0 0 0 0 row 1 of A  
 

 
 

0 ℓ21 
Result A = A2 + 

0 · 
ℓn1 0 

Step 2 Repeat Step 1 for A2 then A3 then A4. . . 

Step n L is lower triangular and U is upper triangular 
    

1 0 0 0 row 1 of A 
 

 
 

 
1 0 row 1 of A2 ℓ21 

A = 
1 0 0 0 row 1 of A3 · · 

ℓn1 ℓn2 ℓn3 1 0 0 0 row 1 of An 



Orthogonal Vectors – Matrices – Subspaces 

T T T T x y = 0 y x = 0 (x + y)T(x + y) = x x + y y RIGHT 
TRIANGLE 

Orthonormal columns q1, . . . , q of Q : Orthogonal unit vectors n 

      
T −−− q −−− 1 0 
1  
· 
· 

 
 q1 · · q n 

 = 
 

1 
· 

 = In QTQ = 

T −−− q −−− 0 1 n 

    
T −−− q −−− 1  q1 · · q n 

 
 

 = q1q QQT = T T · 
· = I 
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+ · · · + q q 1 n n 

T −−− q −−− n 



Orthogonal Vectors – Matrices – Subspaces 

T T T T x y = 0 y x = 0 (x + y)T(x + y) = x x + y y RIGHT 
TRIANGLE 

Orthonormal columns q1, . . . , q of Q : Orthogonal unit vectors n 

      
T −−− q −−− 1 0 
1 

QTQ = 
 

· 
· 

 
 q1 · · q n 

 = 
 

1 
· 

 = In 

T −−− q −−− 0 1 n 

  
−1 2 

 QTQ = I QQT 6= I 
projection 

QQTQQT = QQT 
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1  Q = 2 −1 
3 

2 2 



= = =

= = =

=
=
=

= =

“Orthogonal matrix” 

  
−1 2 2 

Q =
1  2 −1 2  is square. Then QQT = I and QT = Q−1 

3 
2 2 −1 

If Q1, Q2 are orthogonal matrices, so are Q1Q2 and Q2Q1 

TQTQx T ||Qx||2 x x x ||x||2 Length is preserved 

Eigenvalues of Q Qx λx ||Qx||2 |λ|2 ||x||2 |λ|2 1 

� � 
cos θ − sin θ λ1 cos θ + i sin θ 

Rotation Q |λ1|2 |λ2|2 1 
sin θ cos θ λ2 cos θ − i sin θ 

17/30 



“Orthogonal matrix” 

  
−1 2 2 

Q =
1  2 −1 2  is square. Then QQT = I and QT = Q−1 

3 
2 2 −1 

If Q1, Q2 are orthogonal matrices, so are Q1Q2 and Q2Q1 

T ||Qx||2 = xTQTQx = x x = ||x||2 Length is preserved 

Eigenvalues of Q Qx = λx ||Qx||2 = |λ|2 ||x||2 |λ|2 = 1 

� � 
cos θ − sin θ λ1 = cos θ + i sin θ 

Rotation Q = |λ1|2 = |λ2|2 =1 
sin θ cos θ λ2 = cos θ − i sin θ 
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= = =

= =

· =

"
·

"
·
· ·−−

Gram-Schmidt Orthogonalize the columns of A 
      

A = QR r11 r12 · r1n 

QTA = R  a1 · · · an 
 = 

 q1 · · · qn 
 

 r22 · r2n 

· · 
T qi ak = rik rnn 

Columns a1 to an are independent Columns q1 to q are n 
orthonormal ! 
Column 1 of Q a1 q1r11 r11 ||a1|| q1 

a1 

||a1|| 
T Row 1 of R QTA has r1k q1 ak Subtract (column) (row) 

# # 
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� � r22 r2n 
A − q1 q2 q r11 r12 r1n n 

rnn 

 



−−

Gram-Schmidt Orthogonalize the columns of A 
      

A = QR r11 r12 · r1n 

QTA = R  a1 · · · an 
 = 

 q1 · · · qn 
 

 r22 · r2n 

· · 
T qi ak = rik rnn 

Columns a1 to an are independent Columns q1 to q are n 
orthonormal ! 
Column 1 of Q a1 = q1r11 r11 = ||a1|| q1 = 

a1 

||a1|| 
T Row 1 of R = QTA has r1k = q1 ak Subtract (column) (row) 

� � 
" # " 

r22 · r2n 
A − q1 r11 r12 · r1n = q2 · qn · · 

rnn 

# 
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= =

= = =

= =

=
=

Least Squares : Major Applications of A = QR 

m > n m equations Ax = b, n unknowns, minimize ||b − Ax||2 = ||e||2 

Normal equations for the best xb : ATe 0 or ATAxb ATb 

If A QR then RTQTQRxb RTQTb leads to Rxb QTb 

plane C(A
) = column space of

 A 

b e b − p error vector 

� 
� 

p projection of b 
Abx in the column space 
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plane C(A
) = column space of

 A 

Least Squares : Major Applications of A = QR 

m > n m equations Ax = b, n unknowns, minimize ||b − Ax||2 = ||e||2 

Normal equations for the best xb : ATe = 0 or ATAxb = ATb 

If A = QR then RTQTQRxb = RTQTb leads to Rxb = QTb 

e 

�
� 

b b − p error vector 

p projection of b 
Axb in the column space 
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Least Squares : Major Applications of A = QR 

m > n m equations Ax = b, n unknowns, minimize ||b − Ax||2 = ||e||2 

Normal equations for the best xb : ATe = 0 or ATAxb = ATb 

If A = QR then RTQTQRxb = RTQTb leads to Rxb = QTb 

plane C(A
) = column space of

 A 

b e = b − p = error vector 

� 
� 

p = projection of b 
= Abx in the column space 
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S = ST Real Eigenvalues and Orthogonal Eigenvectors 

= ST T S has orthogonal eigenvectors x y = 0. Important proof. 

Start from these facts : Sx = λx Sy = αy λ 6= α ST = S 

T How to show orthogonality x y = 0 ? Use every fact ! 

TST T 1. Transpose to x = λxT and use ST = S xTSy = λx y 

T T 2. We can also multiply Sy = αy by x xTSy = αx y 

T T T 3. Now λx y = αx y. Since λ =6 α, x y must be zero 
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Eigenvectors of S go into Orthogonal Matrix Q 
       

λ1 

· S  q1 · · q n 
 = 

 λ1q1 · · λnq n 
 = 

 q1 · · q n 
 

 · 
 

λn 

That says SQ = Q� S = Q�Q−1 = Q�QT 

T T S = Q�QT is a sum λ1q1q + · · · + λrq q of rank one matrices 1 n n 

With S = ATA this will lead to the singular values of A 

T T A = U�V T is a sum σ1u1v + · · · + σrurv of rank one matrices 1 r 

Singular values σ1 to σr in �. Singular vectors in U and V 
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= = = =

= = =

Eigenvalues and Eigenvectors of A : Not symmetric 
� � � � 

A x1 ·· xn = λ1x1 ·· λnxn AX = X� 

With n independent eigenvectors A = X�X−1 

A2, A3 , . . . have the same eigenvectors as A 

A2 λ2 An λn x A(λx) λ(Ax) x x x 

� � � � 
X−1 A2 X�X−1 XAX−1 X�2 An X�nX−1 

An �n → 0 : → 0 when All |�i| < 1 
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Eigenvalues and Eigenvectors of A : Not symmetric 
� � � � 

A x1 ·· xn = λ1x1 ·· λnxn AX = X� 

With n independent eigenvectors A = X�X−1 

A2, A3 , . . . have the same eigenvectors as A 

A2 x = A(λx) = λ(Ax) = λ2 x An x = λn x 

� � � � 
X−1 A2 = X�X−1 XAX−1 = X�2 An = X�nX−1 

An �n → 0 : → 0 when All |�i| < 1 
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= = =

=

=

= = =

= = =

6=

PROVE : ATA is square, symmetric, nonnegative definite 

1. ATA = (n × m) (m × n) = n × n Square 

ATBT (ATA)T ATATT ATA 2. (BA)T Symmetric 

3. S ST is nonnegative definite IF 

EIGENVALUE TEST 1 : All eigenvalues ≥ 0 Sx λx 

ENERGY TEST 2 : xTSx ≥ 0 for every vector x 

||Ax||2 
TATAx T TEST 1 IF ATAx λx THEN x λx x AND λ ≥ 0 ||x||2 

TEST 2 applies to every x, not only eigenvectors 

Energy xTSx xTATAx (Ax)T(Ax) ||Ax||2 ≥ 0 

Positive definite would have λ > 0 and xTAx > 0 for every x 0 
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PROVE : ATA is square, symmetric, nonnegative definite 

1. ATA = (n × m) (m × n) = n × n Square 

= ATBT (ATA)T = ATATT 2. (BA)T = ATA Symmetric 

3. S = ST is nonnegative definite IF 

EIGENVALUE TEST 1 : All eigenvalues ≥ 0 Sx = λx 

ENERGY TEST 2 : xTSx ≥ 0 for every vector x 

||Ax||2 
TATAx = λxT TEST 1 IF ATAx = λx THEN x x AND λ = ≥ 0 ||x||2 

TEST 2 applies to every x, not only eigenvectors 

Energy xTSx = xTATAx = (Ax)T(Ax) = ||Ax||2 ≥ 0 

Positive definite would have λ > 0 and xTAx > 0 for every x =6 0 
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AAT is also symmetric positive semidefinite (or definite) 

AAT 

In applications can be the sample covariance matrix 
n − 1 

AAT has the same nonzero eigenvalues as ATA 

Fundamental ! If ATAx = λx then AATAx = λAx 

The eigenvector of AAT is Ax (λ =6 0 leads to Ax =6 0) 
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SINGULAR VALUE DECOMPOSITION 

A = U�V T with UTU = I and V TV = I 

AV = U� means      

A  v1 · · · vr 
 = 

 u1 · · · ur 
 

 

σ1 
.  and Avi . . 

σr 

= σiui 

SINGULAR VALUES σ1 ≥ σ2 ≥ . . . ≥ σr > 0 r = rank of A 

A 

V T � U 
x Ax 

v2 

v1 

˙1 
˙2 

˙2u2 

V ˙1u1 

U and V are rotations and possible reflections. � stretches circle to ellipse. 
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=

=

= = =
=
6=

=

=

How to choose orthonormal vi in the row space of A ? 

The vi are eigenvectors of A
TA 

ATAvi = λivi = σi 
2vi The vi are orthonormal. V TV = I 

Avi 
How to choose ui in the column space ? ui 

σi 

The ui are orthonormal This is the important step UT U I 
� �T � � T Tσ2 vj A

TAvi vj i vi 1 i j Avj Avi 

σj σi σj σi σj σi 0 i j 

Full size SVD A U�V T 

m × n m × m n × n 
  

σ1 0 
ur+1 to um : Nullspace of AT 

 
 
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: 
� 

σr 
vr+1 to vn : Nullspace of A 

0 0 
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How to choose orthonormal vi in the row space of A ? 

The vi are eigenvectors of A
TA 

ATAvi = λivi = σi 
2vi The vi are orthonormal. V TV = I 

Avi 
How to choose ui in the column space ? ui = 

σi 

The ui are orthonormal This is the important step UT U = I 
� �T � � T Tσ2 vj A

TAvi vj i vi Avj Avi 1 i = j 
= = = 

σj σi 0 i =6 j σj σi σj σi 

Full size SVD A U�V T 

m × n m × m n × n 
  

σ1 0 
ur+1 to um : Nullspace of AT 

 
 
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σr 
vr+1 to vn : Nullspace of A 

0 0 
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TA 

ATAvi = λivi = σi 
2vi The vi are orthonormal. V TV = I 

Avi 
How to choose ui in the column space ? ui = 

σi 

The ui are orthonormal This is the important step UT U = I 
� �T � � T Tσ2 vj A

TAvi vj i vi Avj Avi 1 i = j 
= = = 

σj σi 0 i =6 j σj σi σj σi 

Full size SVD A = U�V T 

m × n m × m n × n 
  

σ1 0 
ur+1 to um : Nullspace of AT 

 
 
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σr 
vr+1 to vn : Nullspace of A 

0 0 



� � � � � � 
3 0 25 20 9 12 

SVD of A = ATA = AAT = 
4 5 20 25 12 41 

� � � √ � � � 

U = 
1 
3 

−3 
1 

� = 
3 5 √ 

5 
V T = 

1 
−1 

1 
1 

√ √ 
10 2 

� � � � � � 
T T 3 1 1 1 3 −3 3 0 

σ1u1v1 + σ2u2v2 = + = 
2 3 3 2 −1 1 4 5 
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Low rank approximation to a big matrix 

A = U�V T T T Start from the SVD = σ1u1v1 + · · · + σrurvr 

T T Keep the k largest σ1 to σk = σ1u1v + · · · + σkukv Ak 1 k 

Ak is the closest rank k matrix to A ||A − Ak|| � ||A − Bk|| 

Norms p 
||A|| = σmax ||A||F = σ

1
2 + · · · + σr 

2 ||A||N = σ1 + · · · + σr 
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Randomized Numerical Linear Algebra 

For very large matrices, randomization has brought a revolution 

Example : Multiply AB with Column-row sampling (AS) (STB) 

     
s11 0 " 

bT 
# 

s11 1 
AS = a1 a2 a3  0 0 = s11a1 s32a3  and STB = 

bT s32 0 3 s32 

NOTICE SST is not close to I. But we can have 

E[SST] = I E[(AS) (STB)] = AB 

Norm-squared sampling Choose column-row with probabilities 
≈ ||ai|| ||bT|| i 

This choice minimizes the sampling variance 
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OCW.MIT.EDU and YouTube 

Math 18.06 Introduction to Linear Algebra 
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