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Preface

The title “ZoomNotes” indicates that these pages were created in 2020 and 2021. But they are not 
limited to online lectures. I hope these notes will help instructors and students to see linear algebra 
in an organized way, from vectors to matrices to subspaces to bases. “Linear independence” is a 
crucial idea for this subject, so it comes early—for vectors of integers.

I hope that faculty who are planning a linear algebra course and students who are reading for 
themselves will see these notes.

A happy part of linear algebra is the wonderful variety of matrices—diagonal, triangular, 
symmetric, orthogonal, and many more. The organizing principles have become matrix factoriza-
tions like A = LU (lower triangular times upper triangular). The idea of elimination—to simplify 
the equations Ax = b by introducing zeros in the matrix—appears early as it must. Please don’t 
spend forever on those computations. Linear algebra has so many more good ideas.
The reader may know my video lectures on OpenCourseWare : Math 18.06 is on ocw.mit.edu and 

on Youtube/mitocw. I am so grateful that those have been helpful. Now I have realized that 
lecture notes can help in a different way. You will quickly gain a picture of the whole course—
the structure of the subject, the key topics in a natural order, the connecting ideas that make linear 
algebra so beautiful. This structure is the basis of two textbooks from Wellesley-Cambridge Press :

Introduction to Linear Algebra Linear Algebra for Everyone

I don’t try to teach every topic in those books. I do try to reach eigenvalues and singular values !
A basis of eigenvectors for square matrices—and of singular vectors for all matrices—takes you
to the heart of a matrix in a way that elimination cannot do.

The last chapters of these notes extend to a third book and a second math course 18.065
with videos on OpenCourseWare :

Linear Algebra and Learning from Data (Wellesley-Cambridge Press 2019)

This is “Deep Learning” and it is not entirely linear. It creates a learning function F (x,v)
from training data v (like images of handwritten numbers) and matrix weights x. The piecewise
linear “ReLU function” plays a mysterious but crucial part in F . Then F (x,vnew) can come close
to new data that the system has never seen.

The learning function F (x,v) grows out of linear algebra and optimization and statistics and
high performance computing. Our aim is to understand (in part) why it succeeds.

Above all, I hope these ZoomNotes help you to teach linear algebra and learn linear algebra.
This subject is used in so many valuable ways. And it rests on ideas that everyone can understand.

Thank you. Gilbert Strang

https://ocw.mit.edu/
https://www.youtube.com/user/MIT


Textbooks, ZoomNotes, and Video Lectures

Introduction to Linear Algebra, 5th Ed. (2016)

Linear Algebra and Learning from Data (2019)

Linear Algebra for Everyone (2020)

Differential Equations and Linear Algebra (2014)

ZoomNotes for Linear Algebra (2021)

math.mit.edu/linearalgebra 

math.mit.edu/learningfromdata 

math.mit.edu/everyone

math.mit.edu/dela

Video Lectures OpenCourseWare ocw.mit.edu/courses youtube/mitocw

Math 18.06 and 18.06SC Linear Algebra at MIT

(added to 18.06) A 2020 Vision of Linear Algebra

Math 18.065 Linear Algebra and Learning from Data

Math 18.085 and 18.086 Computational Science and Engineering

Strang and Moler Differential Equations and Linear Algebra

Interview with Lex Fridman https://www.youtube.com/watch?v=lEZPfmGCEk0

Wellesley - Cambridge Press
Box 812060, Wellesley MA 02482 USA
www.wellesleycambridge.com

Gilbert Strang’s page : math.mit.edu/∼gs

Outside US/Canada : www.cambridge.org
Orders : math.mit.edu/weborder.php Select books, India : www.wellesleypublishers.com
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Three Great Factorizations : LU ,QR, SVD

Orthogonal matrix
QTQ = I
SquareQQT = I

Q =


 q1 q2 · · · qn




Orthogonal basis

Triangular matrix
Rij = 0 for i > j
Rjj 6= 0 on diagonal

R =




r11 r12 · r1n
r22 · r2n

· ·
rnn




Triangular basis

1. A = LU = (lower triangular) (upper triangular) : Elimination

2. A = QR = (orthogonal) (upper triangular) : Gram-Schmidt

3. A = UΣV T = (orthogonal) (diagonal) (orthogonal) : Singular values
Chapters 2, 4, 7

row
space
ofA

column
space
ofA

U andR and V
input basis

L andQ andU
output basis
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Basic Ideas of Linear Algebra

1.1 Linear Combinations of Vectors

1.2 Dot Products v ·w and Lengths ||v|| and Angles θ

1.3 Matrices Multiplying Vectors

1.4 Column Space and Row Space ofA

1.5 Dependent and Independent Columns

1.6 Matrix-Matrix MultiplicationAB

1.7 FactoringA into CR : Column rank= r = Row rank

1.8 Rank one matrices A = (1 column) times (1 row)



Part 1 : Basic Ideas of Linear Algebra

1.1 Linear Combinations of Vectors

A 3-dimensional vector v =




v1
v2
v3


 has 3 components v1, v2, v3 as in v =




2
4
1




v gives a point in 3-dimensional space R3. Think of an arrow from (0, 0, 0) to (2, 4, 1).

We add vectors v +w. We multiply them by numbers like c = 4 and d = 0 (called scalars)



3
4
5


+




2
0
−2


=




5
4
3


 4




3
4
5


=




12
16
20


 0




2
0
−2


=




0
0
0


= zero vector

Linear combinations 2v − 3w and cv + dw and w − 2z + u

2




3
4
5


− 3




1
2
3


 =




3
2
1


 1




1
2
3


− 2




4
5
6


+ 1




7
8
9


 =




0
0
0




Allow every c, d or all c, d, e All combinations of v andw usually (!) fill a plane in R3

All c




3
4
5


+ d




1
2
3


 fill a plane All c




1
2
3


+ d




3
4
5


+ e




1
0
0


 fill 3D space R3

Sometimes a combination gives the zero vector. Then the vectors are dependent.

All c



3
4
5


+ d




6
8

10


 only fill a line. They are all multiples of




3
4
5


. This includes



−3
−4
−5




All c



1
2
3


+ d



4
5
6


+ e



7
8
9


 only fill a plane and not 3D space.

That third vector is nothing new.



7
8
9


 is 2



4
5
6


−




1
2
3


.

5
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1.2 Dot Products v ·w and Lengths ||v|| and Angles θ

Dot product v ·w =




3
4
5


 ·




2
0
1


 =

3× 2
4× 0
5× 1
add

= 11
v ·w = w · v

[
a
b

]
·
[

c
d

]
= ac+ bd

Length squared of v=
[
3
4

]
is ||v||2 = 32 + 42 = 9+ 16. This is Pythagoras c2 = a2 + b2

Length squared of v is ||v||2 = v · v =




3
4
5


·




3
4
5


= 9 + 16 + 25 (Pythagoras in 3D)

Length squared of v +w is (v +w) · (v +w) = v · v + v ·w +w · v +w ·w

||v +w||2 = ||v||2 + ||w||2 + 2v ·w ||v +w|| ≤ ||v||+ ||w||

v =




3
4
5


 w =




1
0
−1


 v +w =




4
4
4




Length squared
of v +w is
42 + 42 + 42

48 is 50+ 2+ 2 v ·w

Triangle has
edges v,w,v −w

||v −w||2 = ||v||2 + ||w||2 − 2v ·ww
v −w

v

The dot product v ·w reveals the angle θ between v and w

| cos θ| ≤ 1 is one way to see the Schwarz inequality
v ·w = ||v|| ||w|| cos θ
|v ·w| ≤ ||v|| ||w||

The angle between v=




2
2
−1


 and w=



−1
2
2


 is θ = 90◦

because v ·w= 0 : Perpendicular

The angle between v=
[
1
0

]
andw=

[
1
1

]
is θ =45◦ because v ·w=1 and ||v|| ||w||=

√
2.
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1.3 Matrices Multiplying Vectors
There is a row way to multiply Ax and also a column way to compute the vector Ax

Row way = Dot product of vector x with each row of A

Ax =

[
2 5
3 7

] [
v1
v2

]
=

[
2v1 + 5v2
3v1 + 7v2

] [
2 5
3 7

] [
1
1

]
=

[
7
10

]

Column way = Ax is a combination of the columns ofA

Ax=

[
2 5
3 7

][
v1
v2

]
= v1

[
column

1

]
+ v2

[
column

2

] [
2 5
3 7

][
1
1

]
=

[
2
3

]
+

[
5
7

]
=

[
7

10

]

Which way to choose ? Dot products with rows or combination of columns ?

For computing with numbers, I use the row way : dot products

For understanding with vectors, I use the column way : combine columns

Same result Ax from the same multiply-adds. Just in a different order

C(A) = Column space ofA = all combinations of the columns = all outputsAx

The identity matrix has Ix = x for every x




1 0 0
0 1 0
0 0 1






x1

x2

x3


 =




x1

x2

x3




The column space of the 3 by 3 identity matrix I is the whole space R3.

If all columns are multiples of column 1 (not zero), the column space C(A) is a line.

Line containing all cu

cu = −u/2
u

Plane from
all cu+ dv

u
v
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1.4 Column Space and Row Space ofA

The column space ofA contains all linear combinations of the columns ofA

All the vectors Ax (for all x) fill the column space C(A) : line or plane or . . .

If v is in C(A) so is every c v. [Reason : v = Ax gives cv = A(cx)]

If v1 and v2 are in C(A) so is v1 + v2 [v1 =Ax1 and v2 = Ax2 give v1 + v2 =
A(x1 + x2)]

The column spaces of
[
1 0
0 1

]
and

[
1 3
2 4

]
and

[
1 3 5
2 4 6

]
are the whole R2

The column spaces of
[
1 1
1 1

]
and

[
1 2
1 2

]
are lines inside 2-dimensional space

The column space of Z =

[
0 0
0 0

]
has C(Z) = only one point

[
0
0

]
.

The row space of A contains all combinations of the rows of A

To stay with column vectors, transposeA to make its rows into columns ofAT

Then the row space of A is the column space of AT (A transpose)

The column space of A =

[
1 2 3
3 6 9

]
is an infinite line in the direction of

[
1
3

]

The row and column spaces of A=



1 2 3
1 3 4
1 4 5


are infinite planes. Not all of R3

The row and column spaces of A =



1 2 3
0 4 5
0 0 6


 are the whole R3.

A=

[
1 2 5 1
3 4 6 7

]
has column space = R2

has row space = 2D plane in R4
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1.5 Dependent and Independent Columns
The columns of A are “dependent” if one column is a combination of the other columns

Another way to describe dependence : Ax = 0 for some vector x (other than x = 0)

A1 =



1 2
2 4
1 2


 and A2 =



1 4 0
2 5 0
3 6 0


 and A3 =

[
a b c
d e f

]
have dependent columns

Reasons : Column 2 of A1 = 2 (Column 1) A2 times x =




0
0
1


 gives




0
0
0




A3 has 3 columns in 2-dimensional space. Three vectors in a plane : Dependent !

The columns of A are “independent” if no column is a combination of the other columns

Another way to say it : Ax = 0 only when x = 0

A4 =




1 4
2 5
3 9


 and A5 =




1 1 1
0 1 1
0 0 1


 and A6 = I have independent columns

What about the rows of A1 to A6 ? A1, A2, A4 have dependent rows. Possibly also A3.

For any square matrix : Columns are independent if and only if rows are independent.

A key idea Number of independent rows =
is coming Number of independent columns
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1.6 Matrix-Matrix MultiplicationAB

There are 4 ways to multiply matrices. The first way is usually best for hand computation. The
other three ways produce whole vectors instead of just one number at a time.

1. (Row i ofA) · (Column j ofB) produces one number : row i, column j of AB
[

1 2
3 4

] [
5 7
6 8

]
=

[
17 ·
· ·

]
because

[
1 2

] [ 5
6

]
= 17 Dot product

2. (MatrixA) (Column j ofB) produces column j of AB : Combine columns ofA
[

1 2
3 4

] [
5 7
6 8

]
=

[
17 ·
39 ·

]
because 5

[
1
3

]
+ 6

[
2
4

]
=

[
17
39

]

This is the best way for understanding : Linear combinations. “Good level”

3. (Row i ofA) (MatrixB) produces row i of AB : Combine rows ofB
[

1 2
3 4

] [
5 7
6 8

]
=

[
17 23
· ·

]
because 1

[
5 7

]
+ 2

[
6 8

]
=

[
17 23

]

4. (Column k ofA) (Row k ofB) produces a simple matrix : Add these simple matrices !
[
1
3

][
5 7

]
=

[
5 7
15 21

]
and

[
2
4

][
6 8

]
=

[
12 16
24 32

]
NOW
ADD

[
17 23
39 53

]
=AB

Dot products in 1 are “inner products”. Column-row products in 4 are “outer products”.

All four ways use the samemnpmultiplications if A ism by n and B is n by p.

If A and B are square n by n matrices then AB uses n3 multiply-adds in 1,2,3,4.

Associative Law A timesBC = AB times C Most important rule !

Block multiplication
Block sizes must fit

[
A B
C D

] [
E
F

]
=

[
AE +BF
CE +DF

]
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1.7 FactoringA into CR : Column rank= r = Row rank
Step 1 C contains the first r independent columns ofA (delete dependent columns of A)

1. If column 1 of A is not zero, put it into C

2. If column 2 of A is not a multiple of column 1 of A, put it into C

3. If column 3 of A is not a combination of columns 1 and 2 of A, put it into C

n. If column n of A is not a combination of the first n− 1 columns, put it into C

Step 2 Column j of CR expresses column j of A as a combination of the columns of C

Example A =

[
1 2 4
1 3 5

]
Columns 1 and 2 of A go directly into C
Column 3 = 2 (Column 1) + 1 (Column 2) Not in C

↓
A =

[
1 2 4
1 3 5

]
=

[
1 2
1 3

] [
1 0 2
0 1 1

]
= CR

2 columns in C
2 rows in R

These matrices A,C,R all have column rank 2 (2 independent columns)

By the theorem A,C,R also have row rank 2 (2 independent rows)

First great theorem Every matrix has column rank= row rank

Dimension r of the column space = Dimension r of the row space = Rank of matrix A

A = (m by n) = CR = (m by r) (r by n)
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1.8 Rank one matrices A = (1 column) times (1 row)

Rank one
Example A =

[
2 4 6
3 6 9

]
=

[
2
3

][
1 2 3

]
= CR

Suppose all columns ofA are multiples of one column.
Then all rows ofA are multiples of one row. Rank= 1.

Row space is a line Column space is a line
If all columns of A are multiples of column 1, it goes into C.
If all rows of A are multiples of row 1, that row (divided by a11) goes into R.
Every rank 1matrix factors into one column times one row.
Every rank r matrix is the sum of r rank one matrices.
This comes from column times row multiplication of C times R.

∗ If A starts with a row or column of zeros, look at row 2 or column 2
∗∗ Rank 1 matrices are the building blocks of all matrices

A =




0 0 0
1 3 4
2 6 8


 =




0
1
2



[
1 3 4

]

All the key factorizations of linear algebra add columns times rows

A = CR A = LU A = QR S = QΛQT A = UΣV T

Those 5 factorizations are described in Parts 1+3, 2, 4, 6, 7 of these ZoomNotes



Part 2

Solving Linear Equations
Ax = b : A is n by n

2.1 Inverse MatricesA−1 and Solutions x = A−1b

2.2 Triangular Matrix and Back Substitution for Ux=c

2.3 Elimination : Square MatrixA to Triangular U

2.4 Row Exchanges for Nonzero Pivots : Permutation P

2.5 Elimination with No Row Exchanges : Why isA = LU ?

2.6 Transposes / Symmetric Matrices / Dot Products



Part 2 : Solving Linear Equations
Ax = b : A is n by n

2.1 Inverse MatricesA−1 and Solutions x = A−1b

The inverse of a square matrix A hasA−1A = I andAA−1 = I

2 by 2 A−1=

[
2 1
5 4

]
−1

=
1

3

[
4 −1

−3 2

] [
a b
c d

]
−1

=
1

ad − bc

[
d −b

−c a

]

A has no inverse if ad − bc = 0 A =

[
1 2
4 8

] has no inverse matrix
has dependent rows
has dependent columns

1. Invertible⇔ Rows are independent ⇔ Columns are independent

2. No zeros on the main diagonal⇔ Triangular matrix is invertible

3. If BA = I and AC = I then B = B(AC) = (BA)C = C

4. Invertible⇔ The only solution toAx = b is x = A−1b

5. Invertible⇔ determinant is not zero⇔ A−1 = [cofactor matrix]T/ detA

6. Inverse ofAB = B−1 timesA−1 (need both inverses) ABB−1A−1=I

7. Computing A−1 is not efficient for Ax = b. Use 2.3 : elimination.

14
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2.2 Triangular Matrix and Back Substitution for Ux=c

Solve Ux =




2 3 4
0 5 6
0 0 7






x1

x2

x3


 =




19
17
14


 = c without finding U−1

Upper triangular U / Pivots 2, 5, 7 are not zero / Go from bottom to top

Back substitution The last equation 7x3 = 14 gives x3 = 2

Work upwards The next equation 5x2 + 6(2) = 17 gives x2 = 1

Upwards again The first equation 2x1 + 3(1) + 4(2) = 19 gives x1 = 4

Conclusion The only solution to this example is x = (4, 1, 2)

Special note To solve for x3, x2, x1 we divided by the pivots 7, 5, 2
A zero pivot in U produces dependent rows, dependent columns, no U−1

Inverse of this
difference matrix
= sum matrix




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1




−1

=




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1




Calculus : Inverse of derivative is integral
∫ x

0

df

dx
dx = f(x)− f(0)
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2.3 Elimination : Square MatrixA to Triangular U

A =




2 3 4
4 11 14
2 8 17


→




2 3 4
0 5 6
2 8 17


→




2 3 4
0 5 6
0 5 13


→




2 3 4
0 5 6
0 0 7


 = U

One elimination step subtracts ℓij times row j from row i (i > j)

Each step produces a zero below the diagonal of U : ℓ21 = 2, ℓ31 = ℓ32 = 1

To invert elimination, add
ℓij times row j back to row i




1
−ℓ 1
0 0 1



−1

=




1
ℓ 1
0 0 1




A = LU = (Lower triangular L) times (Upper triangular U)

This A needs 3 elimination steps to a beautiful result

A =




2 3 4
4 11 14
2 8 17


 =




1 0 0
2 1 0
1 1 1






2 3 4
0 5 6
0 0 7


 = L times U

Elimination produced no zeros on the diagonal and created 3 zeros in U

ForAx = b Add extra column b Elimination and back substitution

[
A b

]
=



2 3 4 19
4 11 14 55
2 8 17 50


→

[
U c

]
=



2 3 4 19
0 5 6 17
0 0 7 14


 backsub−−−−−→

in 2.2
x =



4
1
2



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2.4 Row Exchanges for Nonzero Pivots : Permutation P

If a diagonal pivot is zero or small : Look below it for a better pivot
Exchange rows

A =

[
0 2
3 4

]
goes to PA =

[
0 1
1 0

][
0 2
3 4

]
=

[
3 4
0 2

]
Nonzero pivots

3 and 2

Permutation matrix P = Rows of I in any order

There are n ! row orders and n ! permutations of size n (this includes P = I)

The inverse of P is the transpose of P
Exchange rows with columns




0 1 0
0 0 1
1 0 0






0 0 1
1 0 0
0 1 0


 = I

Can you find all six 3 by 3 permutations ? Is every P1P2 = P2P1 ?

IfA is invertible then some PA has no zero pivots and PA = LU

Reverse
the order
by P




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




Circular
shift
by P




0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0






18 ZoomNotes for Linear Algebra

2.5 Elimination with No Row Exchanges : Why isA = LU ?

Reason : Each step removes a column of L times a row of U

Remove




1 (row 1)
ℓ21 (row 1)
ℓ31 (row 1)
ℓ41 (row 1)


 from A to leaveA2 =




0 0 0 0
0 × × ×
0 × × ×
0 × × ×




We removed a rank-one matrix : column times row. It was the column ℓ1 =
(1, ℓ21, ℓ31, ℓ41) times row 1 of A—the first pivot row u1.

We face a similar problem for A2. We take a similar step to A3 :

Remove




0 (row 2 of A2)
1 (row 2 of A2)
ℓ32 (row 2 of A2)
ℓ42 (row 2 of A2)


 fromA2 to leaveA3 =




0 0 0 0
0 0 0 0
0 0 × ×
0 0 × ×




Row 2 of A2 was the second pivot row = second row u2 of U . We removed
a column ℓ2 = (0, 1, ℓ32, ℓ42) times u2. Continuing this way, every step removes
a column ℓj times a pivot row uj of U . Now put those pieces back :

A = ℓ1u1 + ℓ2u2 + · · ·+ ℓnun =


ℓ1 · · · ℓn







u1
...
un


 = LU

That last step was column-row multiplication (see 1.6) of L times U .

Column k of L and row k of U begin with k − 1 zeros. Then L is lower triangular
and U is upper triangular. Here are the separate elimination matrices—inverted and
in reverse order to bring back the original A :

L32L31L21 A = U and A = L−1
21 L

−1
31 L

−1
32 U = LU
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2.6 Transposes / Symmetric Matrices / Dot Products

Transpose ofA =

[
1 2 3
0 0 4

]
is AT =




1 0
2 0
3 4


 (AT)ij = Aji

Rules for the
sum and product

Transpose of A+B is AT + BT

Transpose of AB is BTAT

A symmetric matrix has ST = S This means that every sij = sji

The matrices ATA and AAT are symmetric / usually different

[
2 3

][ 2
3

]
=
[
13

] [
2
3

][
2 3

]
=

[
4 6
6 9

]
4+ 9 = 13

6 = 6

S = LU is improved to symmetric S = LDLT (pivots in U go intoD)

S =

[
2 4
4 11

]
=

[
1 0
2 1

] [
2 4
0 3

]
=

[
1 0
2 1

] [
2 0
0 3

] [
1 2
0 1

]
= LDUT

Dot product Work = Movements · Forces = xTf

Inner product Heat = Voltage drops · Currents = eTy

x ·y = xTy Income = Quantities · Prices = qTp
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Part 3 : Vector Spaces and Subspaces
Basis and Dimension

3.1 Vector Spaces and Four Fundamental Subspaces

Vector space : Linear combinations of vectors in S must stay in S

S=Rn or Subspace of Rn, S=matrices Rm×n or functions ax+b

Not vector spaces Half-line x ≥ 0, invertible matrices, singular matrices

Subspaces All of R3, planes or lines through (0, 0, 0), one point (0, 0, 0)

Four Subspaces Column space C(A) = all vectors Ax
Row space C(AT) = all vectors ATy

Column space = “range” Nullspace N(A) = all x with Ax = 0

Nullspace = “kernel” Left nullspace N(AT)= all y with ATy = 0

Any set of vectors spans a vector space. It contains all their combinations

21
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3.2 Basis and Dimension of a Vector Space S

Basis= A set of independent vectors that span the space S

Every vector in S is a unique combination of those basis vectors

Dimension of S = The number of vectors in any basis for S

All bases contain the same number of vectors

The column space of A =




1 0 0
0 1 0
0 0 0


 is the x-y plane in R3

The first two columns are a basis for C(A)

Another basis for C(A) consists of the vectors




1
1
0


 and




1
3
0




Infinitely many bases Always 2 vectors Dimension of C(A) = 2

The nullspace of this A is the z-axis in R3 : N(A) = all




0
0
z




Every basis for that nullspace N(A) contains one vector like




0
0
1




The dimension of N(A) is 1. Notice 2+ 1 = dimension of R3

Matrix spaces The vector space of 3 by 3 matrices has dimension 9
The subspace of upper triangular matrices has dimension 6

If v1, . . . ,vm

andw1, . . . ,wn

are bases then
mmust equal n

Proof

W =V A


w1 · · · wn


=


v1 · · · vm





a11 · a1n
· · ·

am1 · amn




Ifm < n thenAx = 0 would have a nonzero solution x

ThenWx = V Ax = 0. W would have dependent columns !
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3.3 Column Space and Row Space : Bases by Elimination

Every pivot= 1
Eliminate below
Eliminate above



1 4 9
0 2 4
0 3 7


→



1 4 9
0 1 2
0 3 7


→



1 4 9
0 1 2
0 0 1


→



1 0 1
0 1 2
0 0 1


→R0 = I

R0 = “reduced row echelon form” = rref(A) =
[
r rows start with 1
m − r rows of zeros

]

r = rank A has r independent columns and r independent rows

A =




2 4
3 7
4 9


→




1 2
3 7
4 9


→




1 2
0 1
0 1


→




1 2
0 1
0 0


→




1 0
0 1
0 0


=

[
I
0

]
= R0

I locates r independent columns
P permutes the columns if needed R0=

[
I F
0 0

]
P =

[
r rows with I
m−r zero rows

]

Basis for the column space C = First r independent columns ofA
Basis for the row space R =

[
I F

]
P = r rows andA = CR

A =

[
1 1 2
1 2 3

]
→

[
1 1 2
0 1 1

]
→

[
1 0 1
0 1 1

]
=

[
I F

]
= R0 = R

A = CR is
[
1 1 2
1 2 3

]
=

[
1 1
1 2

] [
1 0 1
0 1 1

]
Row rank = 2
Column rank = 2
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3.4 Ax = 0 andAx = b : xnullspace and xparticular

A =

[
1 2 1 4
2 4 3 9

]
→

[
1 2 1 4
0 0 1 1

]
→

[
1 2 0 3
0 0 1 1

]
= R

2 columns of I
4− 2 columns of F

Basis for nullspace
Special solutions
As1 = 0 and As2 = 0

s1=




−2
1
0
0


 s2=




−3
0
−1
1




2, 3, 1 in R
← 1 and 0
−2,−3,−1 in S
← 0 and 1

“Special” Dependent columns 2 and 4 = combination of independent columns 1 and 3

Elimination from A to R reveals the n− r special solutions

Ax = 0 andRx = 0 Rx=
[
I F

]
P x = 0 S=

[
s1 · · · sn−r

]
=PT

[
−F

In−r

]

PPT = I leads toRS = 0 r equations n − r solutions

Complete solution toAx = b x = xnullspace + xparticular = above ↑+ below ↓

[
A b

]
=

[
1 2 1 4 b1
2 4 3 9 b2

]
→

[
1 2 0 3 d1
0 0 1 1 d2

]
=
[
R d

]
xparticular=




d1

0
d2

0




[
Anew bnew

]
=



1 2 1 4 b1
2 4 3 9 b2
3 6 4 13 b3


→



1 2 0 3 d1

0 0 1 1 d2

0 0 0 0 d3




No solution if d3 6= 0
No solution if b1 + b2 6= b3
Elimination must give 0=0
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3.5 Four Fundamental Subspaces C(A),C(AT),N(A),N(AT)

C(AT) C(A)

Rn 0 Rm0

N(A)
dimension n − r

N(AT)
dimensionm − r

row space
allATy

dimension r

column space
allAx

dimension r

nullspace
Ax = 0

left nullspace
ATy = 0

The big picture

Fundamental Theorem of Linear Algebra, Part 1

The column space and row space both have dimension r.

The nullspaces have dimensions n − r and m− r.

This tells us the Counting Theorem : How many solutions to Ax = 0 ?

m equations, n unknowns, rank r ⇒ Ax = 0 has n− r independent solutions

At least n−m solutions. More for dependent equations (then r < m)

There is always a nonzero solution x to Ax = 0 if n > m
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3.6 Graphs, Incidence Matrices, and Kirchhoff’s Laws

“Graph”

x2

x1

x3

x4

b1 b2
b3

b4 b5

nodes x1 x2 x3 x4 edges

A =




−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1




1
2
3
4
5

This graph has 5 edges and 4 nodes. A is its 5 by 4 incidence matrix.
b = b1 to b5 = currents. x = x1 to x4 = voltages

Edges 1, 2, 3 form a loop in the graph Dependent rows 1, 2, 3
Edges 1, 2, 4 form a tree. Trees have no loops ! Independent rows 1, 2, 4

The incidence matrix A comes from a connected graph with n nodes and m edges.
The row space and column space have dimensions r = n − 1. The nullspaces of A
and AT have dimensions 1 andm− n+ 1 :
N(A) The constant vectors (c, c, . . . , c) make up the nullspace of A : dim = 1.
C(AT) The edges of any spanning tree give r independent rows of A : r = n− 1.
C(A) Voltage Law: The components of Ax add to zero around all loops: dim=n−1.
N(AT) Current Law: ATy = (flow in)−(flow out) = 0 is solved by loop currents.

There arem − r = m − n + 1 independent small loops in the graph.

Currrent law ATy = 0 at each node is fundamental to applied mathematics
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3.7 EveryA Has a PseudoinverseA+++

[
2 0

0 0

]+
=

[
1
2

0

0 0

]

A is invertible if and only ifm = n = r (rank). ThenA+ = A−1

A has a left inverseA+ = (ATA)−1AT when r = n : A+A = In

A has a right inverseA+ = AT(AAT)−1 when r = m : AA+ = Im

A=CR has a pseudoinverseA+=R+C+. Reverse the 4 subspaces

A Row space to column space
A+ Column space to row space

AA+b : project b onto column space
A+Ax : project x onto row spacerow

space ofA
column space ofA+

column
space ofA

A Arow space ofA+

A+p = x+

A+b = x+

A+e = 0

x+

p = Ax+

= AA+b
b

e

0 0

nullspace
of A

AAAnullspace ofAT

AAA= nullspace of A+

A+A=

[
I 0
0 0

]
row space
nullspace AA+=

[
I 0
0 0

]
C(A)
N(AT)

PseudoinverseA+

A+ = V Σ+UT is computed from A = UΣV T : Σ+ has 1/σ’s and 0’s
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Example A =

[
1 1 1
1 1 1

]
= uvT =

[
1
1

][
1 1 1

]
= CR

The pseudoinverse A+ has the same rank r = 1

Row space of A = line in R3 Column space of A = line in R2

Reverse the column space and row space : v and u

A+ =
vuT

||v||2 ||u||2 =
1

6




1
1
1



[
1 1

]

=
1

6




1 1
1 1
1 1




Check A+A=
1

3



1 1 1
1 1 1
1 1 1


= projection onto

row space ofA AA+=
1

2

[
1 1
1 1

]
=

projection onto
column space ofA
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Part 4 : Orthogonal Matrices
and Least Squares

4.1 Orthogonality of the Four Subspaces

Vectors x and y are orthogonal if xTy = 0 (Complex vectors : xTy = 0)

Then ||x+ y||2 = ||x||2 + ||y||2 = ||x− y||2 (Right triangles : Pythagoras)

Orthogonal subspaces : Every v in V is orthogonal to everyw inW

Two walls of a room are not orthogonal. Meeting line is in both subspaces !

The row space and the nullspace of any matrix are orthogonal
The column space C(A) and nullspace N(AT) : Also orthogonal

Clear from Ax = 0 Ax =

[
row 1
—–

rowm

]
 x


 =

[
0·
0

]

All rows are orthogonal to x⇒ whole row space is orthogonal to x

Big Picture of Linear Algebra : Two pairs of orthogonal subspaces

More : r + (n− r) = full dimension n so every x equals xrow + xnull

30
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4.2 Projections onto Subspaces

�������
�������p = x̂ a =

aTb

aTa
a

S

b

p

e

p = Ax̂

= A(ATA)−1ATb

= Pb

b is projected onto line through a and onto column space of A

Error vector e = b− p is orthogonal to the line and subspace

Projection matrix P Pline =
aaT

aTa
Psubspace = A(ATA)−1AT

Notice P 2 = P and PT = P Second projection : p doesn’t move !

Project b =



6
0
0


 Line :

Plane : Column spaces of a =



1
1
1


 and A =



1 0
1 1
1 2




pline = a
aTb

aTa
=




1
1
1


 6

3
=




2
2
2


 Error e = b− p =




4
−2
−2




pplane SolveATx̂ = ATb

[
3 3
3 5

]
x̂ =

[
6
0

]
gives x̂ =

[
5
−3

]

Projection p = Ax̂ =




5
2
−1


 Error e = b − p =




6
0
0


−




5
2
−1


=




1
−2
1




What is the 3 by 3 projection matrix P =A(ATA)−1AT ? Then p=Pb
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4.3 Least Squares Approximations (Regression) :ATAx̂=ATb

If Ax = b has no solution then minimize E = ||b−Ax||2 = xTATAx− 2xTATb+ bTb

Calculus Partial derivatives ∂E/∂x of that error E are zero

Linear algebra Ax is in the column space of A Best Ax̂=projection of b on C(A)

“Normal equations” ATAx̂ = ATb and then the projection is p = Ax̂

Key example Closest straight line y = C +Dt tom points (ti, bi)

m > 2
m equations
2 unknowns
No solution

C + Dt1 = b1
· · · · · · · · · · · ·
C + Dtm = bm

A =




1 t1
· ·
· ·
1 tm


 x =

[
C
D

]
b =




b1
·
·
bm




e b - p (1, -2, 1) best

b = C + Dt = 5 - 3t

ATAx̂ = ATb

[
m

∑
ti∑

ti
∑

t2i

][
C
D

]
=

[
3 3
3 5

] [
5

−3

]
=

[
6
0

]
=

[ ∑
bi∑
tibi

]
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4.4 Orthogonal Matrices and Gram-Schmidt

Orthogonal
columns Q =

[
q1 · · · qn

]
qT
i qi = 1 unit vectors

qT
i qj = 0 orthogonal

QTQ = I

Important case= Square matrix ThenQQT=I QT=Q−1 “Orthogonal matrix”

Q =
1

3




2 −1
2 2
−1 2


 has

QTQ = I

QQT 6= I
Q =

1

3




2 −1 2
2 2 −1
−1 2 2


 Now QT = Q−1

Orthogonal matrix

Q1 times Q2 is orthogonal because (Q1Q2)
−1 = Q−1

2 Q−1
1 = QT

2Q
T
1 = (Q1Q2)

T

v = c1q1 + · · ·+ cnqn leads to ck = qT
k v v = Qc leads to c = QTv

Gram-Schmidt Start with independent a, b, c Create orthogonal vectors q1, q2, q3

q1=
a

||a|| Q2=b− (qT
1 b)q1 q2=

Q2

||Q2||
Q3=c− (qT

1 c)q1 − (qT
2 c)q2 q3=

Q3

||Q3||

Gram-SchmidtA = QR

A = (orthogonal) (triangular)
A=

[
cos θ a12

sin θ a22

]
=

[
cos θ − sin θ

sin θ cos θ

][
1 r12

0 r22

]
= QR
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Part 5 : Determinant of a Square Matrix

5.1 3 by 3 and n by n Determinants



1
1

1






1
1

1






1
1

1






1
1

1






1
1

1






1
1

1




det = +1 −1 +1 −1 +1 −1

Even permutations have detP =+1 Odd permutations have detP =−1

Three defining properties 1 Row exchange reverses sign of det
2 det is linear in each row separately 3 det I = 1




a
q

z






b
p

z






b
r

x






c
q

x






c
p

y






a
r

y




det = +aqz −bpz +brx −cqx +cpy −ary

Linearity separates detA into n! = 3! = 6 simple determinants

det =
a b c a b
p q r p q
x y z x y







− − − + + +

Combine 6 simple determinants into detA

+ aqz + brx + cpy − ary − bpz − cqx

Each term takes 1 number from each row and each column

BIG FORMULA = Sum over all n! orders P = (j, k, . . . , z) of the columns

detA =
∑

(detP ) a1j a2k . . . anz as in +a11a22−a12a21
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5.2 Cofactors and the Formula forA−1

3 by 3 determinant : 2 terms start with a and with b and with c

Cofactor formula detA=a (qz − ry) + b (rx − pz) + c (py − qx)

n factors a, b, c n cofactors = determinants of size n− 1

Remove row i and column j from A CofactorCij=det times (−1)i+j

Cofactors along row 1 detA = a11C11 + · · · + a1nC1n

Inverse formula A−1 = (transpose of C)/(determinant ofA)

Every entry of A−1 =
cofactor
detA

=
det of size n− 1

det of size n

n = 2 A=

[
a b
c d

]
Cofactors C=

[
d −c
−b a

]
A−1=

CT

ad − bc

n = 3 A =



a b c
p q r
x y z


 C =



qz − ry rx− pz py − qx
bz − cy az − cx qx− py
br − cq cp− ar aq − bp




ACT=



detA 0 0
0 detA 0
0 0 detA


=(detA)I This explainsA−1 =

CT

detA
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5.3 DetAB = (Det A) (DetB) and Cramer’s Rule

detA = detAT detAB = (detA) (detB) detA−1 =
1

detA

Orthogonal matrix detQ = ±1 because QTQ = I gives (detQ)2 = 1

Triangular matrix detU = u11u22 · · ·unn

detA = detLU = (detL) (detU ) = product of the pivots uii

Cramer’s Rule to SolveAx = b Start from

 A





x1 0 0
x2 1 0
x3 0 1


 =



b1 a12 a13
b2 a22 a23
b3 a32 a33


 = B1

Use (detA) (x1) = (detB1) to find x1 x1 =
detB1

detA

Same
idea


 A





1 x1 0
0 x2 0
0 x3 1


=


a1 b a3


=B2 x2 =

detB2

detA

Cramer’s Rule is usually not efficient ! Too many determinants
[
3 2
5 4

][
x1

x2

]
=

[
12
22

]
B1=

[
12 2
22 4

]
B2=

[
3 12
5 22

]
x1=

detB1

detA
=
4

2
x2=

2

2
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5.4 Volume of Box= | Determinant of Edge Matrix E |

(0,0)

(c,d)

(a, b)

(a+c, b+d) (v,w)

w

u

Rotate to align
Area= uw

Edge
matrix E =

[
a b
c d

]
= QR = (orthogonalQ) (triangularR) R =

[
u v
0 w

]

To Prove : Area of a parallelogram is |detE |= |ad − bc |= |detR |=uw

2 D area Gram-Schmidt in 4.4 givesE = QR = (orthogonal) (triangular)
Orthogonal Q : Rotates the shape = No change in area !
Triangular R : u = base, w = height, uw = area= |detR |= |detE |

3D volume Edges of box = Rows of E Volume of box = |detE |= |detR |

OrthogonalQ : No volume change Rotate box to see volume = r11r22r33

If the box is a unit cube : E = identity matrix and volume = 1

Any shape Multiply all points by A Volume multiplies by detA
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Part 6 : Eigenvalues and Eigenvectors :
Ax = λx andAnx = λnx

6.1 Eigenvalues λ and Eigenvectors x : Ax = λx

Ax is on the same line as x / Ax = λx means (A − λI)x = 0

ThenA2x = A(λx) = λ(Ax) = λ2x Anx = λnx A−1x =
1

λ
x

Determinant ofA − λI = 0 Solutions λ1 to λn : A has n eigenvalues

A =

[
.8 .3
.2 .7

]
A − λI =

[
.8− λ .3
.2 .7− λ

]

det(A − λI) = λ2 − 1.5λ + .56 − .06 = (λ− 1)
(
λ− 1

2

)

Eigenvector x2

for λ2 = 1

2

(
A− 1

2
I
)
x2 =

[
.3 .3
.2 .2

] [
x2

]
=

[
0
0

]
gives x2 =

[
1

−1

]

Eigenvector x1

for λ1 = 1
(A− I)x1 =

[
−.2 .3
.2 −.3

] [
x1

]
=

[
0
0

]
gives x1 =

[
0.6
0.4

]

What is A10

[
1
0

]
? Separate into eigenvectors / Follow each eigenvector

[
1
0

]
=

[
0.6
0.4

]
+

[
0.4
−0.4

]
A10

[
1
0

]
= 110

[
0.6
0.4

]
+

(
1

2

)10[
0.4

−0.4

]

Useful Sum of λ’s = λ1 + · · ·+ λn = trace of A = a11 + a22 + · · ·+ ann

facts Product of λ’s = (λ1) · · · (λn) = determinant ofA

Eigenvalues of A+B and AB are usually not λ(A) + λ(B) and λ(A)λ(B)

40
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6.2 Diagonalizing a Matrix : X−1AX= Λ = eigenvalues

Key idea / Follow each eigenvector separately / n simple problems

Eigenvector matrixX
Assume independent x’s
ThenX is invertible

AX=A


 x1 · · · xn


=


 λ1x1 · · · λnxn




AX = XΛ
X−1AX = Λ
A = XΛX−1


 λ1x1 · · · λnxn


=


 x1 · · · xn





λ1

. . .
λn




1
Ak becomes easy Ak = (XΛX−1) (XΛX−1) · · · (XΛX−1)

Same eigenvectors in X Ak = XΛkX−1 Λk = (eigenvalues)k

[
1 2
0 3

]4
=XΛ4X−1=

[
1 1
0 1

][
14 0
0 34

][
1 −1
0 1

]
=

[
1 81
0 81

][
1 −1
0 1

]
=

[
1 80
0 81

]

2 Question : When doesAk → zero matrix ?
Answer : All |λi| < 1

3 Some matrices are not diagonalizable
They don’t have n independent vectors

A=

[
3 6
0 3

]
has λ=3 and 3

That A has double eigenvalue, single eigenvector Only one x=

[
1
0

]

4

All the “similar matrices”BAB−1 have the same eigenvalues asA

If Ax = λx then (BAB−1) (Bx) = BAx = Bλx = λ(Bx)
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6.3 Symmetric Positive Definite Matrices : Five Tests

If S = ST Eigenvalues λ are real Eigenvectors x are orthogonal

S=

[
5 4
4 5

]
=ST has S

[
1
1

]
=9

[
1
1

]
and S

[
−1
1

]
=

[
−1
1

]
Notice

x1 ·x2=0

[
1
1

]
·
[
−1
1

]
=0

q=
x

||x|| =
eigenvectors
length = 1

Eigenvector matrixQ is an
orthogonal matrix : QT = Q−1

S=QΛQ−1=QΛQT

Spectral theorem

S =

[
5 4
4 5

]
=

1√
2

[
1 −1
1 1

] [
9 0
0 1

] [
1 1
−1 1

]
1√
2
= QΛQT

Positive definite matrices are the best. How to test S for λi > 0 ?

Test 1 Compute the eigenvalues of S : All eigenvalues positive
Test 2 The energy xTSx is positive for every vector x 6= 0

Test 3 The pivots in elimination on S are all positive
Test 4 The upper left determinants of S are all positive
Test 5 S = ATA for some matrix A with independent columns

Positive semidefinite matrices can be singular : Test 5 is S = anyATA

Eigenvalues and energy and pivots and determinants of S can be zero
[
2 b
b 4

]
Positive definite if b2 < 8 Semidefinite if b2 ≤ 8

Second difference matrix
Positive definite in 6.5

S =




2 −1 0
−1 2 −1
0 −1 2




Positive semidefinite
Sx = 0 for x = (1, 1, 1)

S =




1 −1 0
−1 2 −1
0 −1 1



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6.4 Linear Differential Equations
du

dt
= Au

n = 1
du

dt
= au is solved by u(t) = Ceat = u(0)eat

n ≥ 1
du

dt
= Au is solved by eigenvectors as in u(t) = c1e

λ1tx1

The key is constant matrix A⇔ exponential solution eλtx when Ax = λx

Check : If u = eλtx then
du

dt
= λeλtx = Aeλtx = Au as required

A=

[
5 4
4 5

]
has λ1=9 u1=e9t

[
1
1

]
du1

dt
=9e9t

[
1
1

]
=e9tA

[
1
1

]
=Au1

Initial condition
u(0) at t = 0

Split u(0) into
eigenvectors x u(0) = c1x1 + · · ·+ cnxn

Each eigenvector
goes its own way

Combine
solutions

u(t) = c1e
λ1tx1 + · · ·+ cne

λntxn

Special case λ1 = λ2 with
one eigenvector x u(t) = c1e

λ1tx1 + c2te
λ1tx1

Stability u(t)→ 0 if all eigenvalues λ = a+ ib have real part a < 0

Weak stability u(t)→ steady state if one λ moves up to λ = 0

Matrix
Exponential

eAt is the
solution matrix eAt u(0) = u(t) eAtx = eλtx

Exponential
Series eAt ex = 1+ x+

x2

2
+ · · ·+ xn

n!
+ · · · eA = I +A+

A2

2
+ · · ·+ An

n!
+ · · ·
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6.5 Matrices in Engineering : Second differences

Centered
difference

du

dx
≈ u (x+h)−u (x−h)

2h

Second
difference

d2u

dx2
≈ u (x+h)−2u (x)+u (x−h)

h2

Second
differences
with u0 = u4 = 0

− d2u

dx2
≈ 1

h2




2 −1 0
−1 2 −1
0 −1 2






u1

u2

u3


 =

1

h2
Ku

Eigenvalues 2 −
√
2, 2, 2 +

√
2 Pivots

2

1
,
3

2
,
4

3
Determinants 2, 3, 4

Energy
xTKx

[
x1 x2 x3

]
 K






x1

x2

x3


=

2(x2
1 − x1x2 + x2

2 − x2x3 + x2
3) > 0

K is positive definite

u0 = 0

mass

mass

mass

u4 = 0

u0 = 0

−Ku = m
d2u

dt2

pulling up

pulling down

u4 = 0

Steady state

Spring forces

Balance gravity

Ku = g

Displacements u

Oscillation

Springs pull

Masses move

Newton’s Law F = ma

Use eigenvalues ofK
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Part 7 : Singular Values and Vectors :
Av=σu andA=UΣV T

7.1 Singular Vectors in U, V and Singular Values in Σ

An example shows orthogonal vectors v going into orthogonal vectors u

Av1 =

[
3 0
4 5

][
1
1

]
=

[
3
9

]
and Av2 =

[
3 0
4 5

][
−1
1

]
=

[
−3
1

]

v1 =

[
1
1

]
is orthogonal to v2 =

[
−1
1

] [
3
9

]
is orthogonal to

[
−3
1

]

Divide both inputs v by
√
2 Divide both outputs u by

√
10

Matrix form
AV = UΣ

[
3 0
4 5

][
v1 v2

]
=

[
u1 u2

][
3
√
5 0

0
√
5

]

V and U= orthogonal matrices V TV =I UTU=I A = UΣV T

v1, v2 = orthogonal basis for the row space = inputs
u1,u2 = orthogonal basis for the column space = outputs
σ1 = 3

√
5 and σ2 =

√
5 are the singular values of this A

46
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7.2 Reduced SVD / Full SVD / Construct UΣV T fromATA

Reduced SVD : Stop at ur and vr Full SVD : Go on to um and vn

A = U rΣrV
T
r =




u1 to ur

column space
m× r





σ1

. . .
r by r σr





vT
1 row
to space
vT
r r × n




A = UΣV T =




u1 to um

columns

m×m







σ1

·
σr

m by n 0 0







vT
1 row space

vT
r n× n

vT
n nullspace




Key ideas ATA = V ΣTUTUΣV T = V ΣTΣV T AAT = UΣΣTUT

Eigenvectors ! ATAv = σ2v and AATu = σ2u n v’s andm u’s
The u’s are chosen so that Avk = σkuk σ1 ≥ · · · ≥ σr > 0

k≤r vk and σ2
k fromATA uk=

Avk

σk

uT
j uk=

(
Avj

σj

)T
Avk

σk
=
σk

σj
vT
j vk=0

SquareA
has |λ| ≤ σ1

|λ| ||x||= ||Ax||= ||UΣV Tx||= ||ΣV Tx||≤σ1 ||V Tx||=σ1 ||x||

A=



0 1 0
0 0 8
0 0 0


 λ = 0, 0, 0

σ = 8, 1, (0)
A = u1σ1v

T
1 + u2σ2v

T
2

A has rank r = 2

2 singular values

A=

[
3 0
4 5

]
λ = 5, 3

σ = 3
√
5,
√
5

u1σ1v
T
1

+
u2σ2v

T
2

=
3

2

[
1 1
3 3

]
+

1

2

[
3 −3
−1 1

]
=A
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7.3 The Geometry of the SVD : Rotate – Stretch – Rotate

v2

v1

Rotate by V T Stretch by Σ Rotate by U

V T

x Ax
Σ

σ1

σ2

U

σ1u1

σ2u2

A

A = (Orthogonal) (Diagonal) (Orthogonal)

A =

[
a b
c d

]
=

[
cos θ − sin θ
sin θ cos θ

] [
σ1

σ2

] [
cosφ sinφ
− sinφ cosφ

]

Four numbers a, b, c,d in A produce four numbers θ,σ1,σ2,φ in the SVD

3× 3 : Nine numbers in A produce which 9 numbers for UΣV T ?

n× n : An orthogonal matrix comes from 1
2
n(n− 1) simple rotations

Inputs x = unit circle Outputs Ax = stretched ellipse
Radius vectors v1 and v2 Axis vectors σ1u1 and σ2u2
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7.4 Ak is Closest toA : Principal Component Analysis PCA

SVD A = UΣV T = u1σ1v
T
1 + · · · + urσrv

T
r A has rank r

Ak = UkΣkV
T
k = u1σ1v

T
1 + · · · + ukσkv

T
k any k ≤ r

Great fact ThisAk from the SVD is the closest rank k matrix toA

“Eckart-Young” ||A−Ak|| ≤ ||A− B|| if B has rank k

Matrix norms ||A||ℓ2 norm = σ1 ||A||Frobenius =
√

σ2
1 + · · ·+ σ2

r

A0 = matrix of data A = subtract row average from each row of A0

S =
AAT

n− 1
= sample covariance matrix is symmetric positive definite

×××

×××

×××

×××
×××

×××
×××

×××
×××

×××
××××××

×××

×××

×××

×××

×××
×××

×××

×××
×××

××× ×××

×××
××× ×××

×××

×××

×××

Line closest to data is u1 : The key to PCA
Straight line fit using perpendicular distances

u1= eigenvector of S = first principal component
= singular vector of A= captures most variance

Total variance of the data = Add the eigenvalues of S = σ2
1 + · · ·+ σ2

r
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7.5 Computing Eigenvalues of S and Singular Values ofA

Step 1 Produce zeros in the matrix S → Q−1SQ = S0 Same λ’s
Q,Q1, Q2 = orthogonal matrix A→ Q−1

1 AQ2 = A0 Same σ’s

New S0 has only 3 nonzero diagonals A0 has only 2 nonzero diagonals

Step 2 “QR method” uses Gram-Schmidt to orthogonalize columns
S = (Orthogonal Q) (Upper triangular R) at every step

Factor S0=Q0R0 Reverse S1=R0Q0 Repeat S1=Q1R1 and S2=R1Q1

Amazing : The off-diagonal entries get small : Watch sin θ → − sin3 θ

Sk = QkRk

[
cos θ sin θ
sin θ 0

]
=

[
cos θ − sin θ
sin θ cos θ

] [
1 sin θ cos θ
0 − sin2 θ

]

Sk+1 = RkQk

[
1 sin θ cos θ
0 − sin2 θ

] [
cos θ − sin θ
sin θ cos θ

]
=

[
∗ ∗

− sin3 θ ∗

]

Sk approaches Λ : The eigenvalues λ begin to appear on the diagonal

Similar idea for SVD=Golub-Kahan algorithm :σ’s appear on the diagonal
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7.6 Compressing Images by the SVD

Flag with
3 stripes




B B B B B B
B B B B B B
W W W W W W
W W W W W W
R R R R R R
R R R R R R



=




B
B
W
W
R
R




[
1 1 1 1 1 1

]

Rank one matrix
Great compression

Triangular flag




1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1




This has all σ >
1

2
Poor compression

Compress photographs https://timbaumann.info/svd-image-compression-demo/

Uncompressed image = 600× 600 = 360, 000 pixels
Compressed image UΣV T = 600× 100 + 100 + 100× 600 = 120, 000

Serious compression UΣV T = 600× 20 + 20 + 20× 600 = 24, 020

Compression is highly developed See Wikipedia for Eigenfaces



52 ZoomNotes for Linear Algebra

7.7 The Victory of Orthogonality

1 Length of Qx = Length of x ||Qx||2 = ||x||2 (Qx)T(Qy) = xTy

2 All powersQn and all productsQ1Q2 remain orthogonal

3 Reflection H = I − 2uuT = orthogonal + symmetric when uTu = 1

4 Symmetric matrices have orthogonal eigenvectors SQ = QΛ

5 All matrices have orthogonal singular vectors v’s and u’s : AV = UΣ

6 The pseudoinverse of UΣV T is V Σ+UT Nonzeros in Σ+ are
1

σ

7 Polar decomposition A = QS = (orthogonal) (symm positive definite)

8 Gram-Schmidt = Highly valuable A=QR = (orthogonal) (triangular)

9 Orthogonal functions for Fourier series f (x) =
∑

akcos kx + bksin kx

v1 v2rows

null
v3

A

columns

u2

u1
Av1 = σ1u1

Av2 = σ2u2

Big picture of the SVD
Orthogonal rows→ Orthogonal columns



Part 8
Linear Transformations
and Their Matrices

8.1 Examples of Linear Transformations

8.2 Derivative MatrixD and Integral MatrixD+D+D+

8.3 Basis for V and Basis for Y⇒Matrix for T :V→Y



Part 8 : Linear Transformations
and Their Matrices

8.1 Examples of Linear Transformations

V and Y are vector spaces (the vectors can be matrices or functions !)

T is a linear transformation from V to Y (inputs to outputs)

Test for linearity T (cv + dw) = cT (v) + dT (w) for all v,w in V

Example 1 V = x-y plane Rotate the plane R2 by a fixed angle θ

Straight lines rotate into straight lines (required by linearity)

Center point 0=(0, 0) stays put T (0+0)=T (0)+T (0) requires T (0)=0

This T has an inverse T−1 : Rotate by −θ is another linear transformation

Example 2 Input space V = all 3 by 3 matrices = output space Y

T sets all off-diagonal entries to zero T (matrix) = (diagonal matrix)

T 2 will be the same as T : T is like a projection on matrix space

Multiply transformations T2T1 Output space for T1 = Input space for T2

T2T1 obeys the same rule as matrix multiplication T2(T1x) = (T2T1)x

Example 3 V = all functions a+ bx+ cx2 Y = all functions d+ ex

T (a + bx+ cx2) = derivative of the input function = output b+ 2cx

“Derivative” is a linear transformation ! Otherwise calculus would fail

“Integral” is also a linear transformation on a space of functions

54



Part 8 : Linear Transformations and Their Matrices 55

8.2 Derivative MatrixD and Integral MatrixD+D+D+

Choose basis 1, x, x2 for input space V : Quadratic functions

Choose basis 1, x for output space Y : Linear functions

Apply derivative transformation to the input basis v1=1, v2=x, v3=x2

Express outputs T (v1) = 0, T (v2) = 1, T (v3) = 2x in the output basis

T (v1) = 0 T (v2) =
dx

dx
= 1 = u1 T (v3) =

d

dx
(x2) = 2x = 2u2

The columns of D show those derivatives with respect to the bases

D =

[
0 1 0
0 0 2

]
= matrix form of the derivative T =

d

dx

D times




a
b
c


 =

[
b
2c

]
tells us the outputs from the inputs a, bx, cx2

Integral transformation S from Y back to V Inputs 1, x Outputs 1, x, x2

S(1) = x = v2 S(x) = 1
2
x2 = 1

2
v3 Integral matrixE =




0 0
1 0
0 1

2




Fundamental Theorem of Calculus : Derivative of integral of f is f

DE =

[
0 1 0
0 0 2

]


0 0
1 0
0 1

2


 =

[
1 0
0 1

]
= identity transformation on Y

ED =




0 0
1 0
0 1

2



[
0 1 0
0 0 2

]
=




0 0 0
0 1 0
0 0 1


 = only a projection on V

E=pseudoinverseD+ofD Not the inverse because derivative of 1 is 0
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8.3 Basis for V and Basis for Y⇒Matrix for T :V→Y

Every linear transformation T : V→ Y can be expressed by a matrix A

That matrix A depends on the basis for V and the basis for Y

To construct A : Apply T to the input basis vectors v1 to vn

Then T (vj) = a1jy1 + a2jy2 + · · ·+ amjym gives column j of A

Input v = c1v1 + · · ·+ cnvn Output y = c1T (v1) + · · ·+ cnT (vn)

That output y has coefficients Ac in the output basis for Y

Main point ! Multiplication byA copies the linear transformation T

Both linear and both correct for basis⇒ both correct for every input

Change input basis to V 1, . . . ,V n Change output basis to Y 1, . . . ,Y m

The matrix for the same T in these new bases is M = Y −1AV

V = identity on input space : but basis change from v’s to V ’s

Y = identity on output space : but basis change from y’s to Y ’s
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9.2 Complex Matrices : Hermitian S = S
T and UnitaryQ−1 = Q

T

9.3 Fourier Matrix F and the Discrete Fourier Transform

9.4 Cyclic Convolution and the Convolution Rule

9.5 FFT : The Fast Fourier Transform



58 ZoomNotes for Linear Algebra✬

✫

✩

✪

R = line of all real numbers−∞ < x <∞ ↔ C = plane of all complex numbers z = x+ iy

|x| = absolute value of x ↔ |z| =
√
x2 + y2 = r = absolute value (or modulus) of z

1 and −1 solve x2 = 1 ↔ z = 1, w, . . . , wn−1 solve zn = 1 where w = e2πi/n

The complex conjugate of z = x+ iy is z = x − iy. |z|2 = x2 + y2 = zz and
1

z
=

z

|z|2 .

The polar form of z = x+ iy is |z|eiθ = reiθ = r cos θ + ir sin θ. The angle has tan θ =
y

x
.

Rn: vectors with n real components ↔ Cn: vectors with n complex components
length: ‖x‖2 = x2

1 + · · ·+ x2
n ↔ length: ‖z‖2 = |z1|2 + · · ·+ |zn|2

transpose: (AT)ij = Aji ↔ conjugate transpose: (AH)ij = Aji

dot product: xTy = x1y1 + · · ·+ xnyn ↔ inner product: uHv = u1v1 + · · ·+ unvn

reason for AT: (Ax)Ty = xT(ATy) ↔ reason for AH: (Au)Hv = uH(AHv)

orthogonality: xTy = 0 ↔ orthogonality: uHv = 0

symmetric matrices: S = ST ↔ Hermitian matrices: S = SH

S = QΛQ−1 = QΛQT(real Λ) ↔ S = UΛU−1 = UΛUH (real Λ)
orthogonal matrices: QT = Q−1 ↔ unitary matrices: UH = U−1

(Qx)T(Qy) = xTy and ‖Qx‖ = ‖x‖ ↔ (Ux)H(Uy) = xHy and ‖Uz‖ = ‖z‖



Part 9 : Complex Numbers
and the Fourier Matrix

9.1 Complex Numbers x + iy = reiθ : Unit circle r = 1

Complex numbers z = x + iy x = real part y = imaginary part

Magnitude |z| = r =
√

x2 + y2 Angle tan θ =
y

x

Euler’s Formula z = reiθ = r cos θ + ir sin θ = r
x

r
+ ir

y

r

Complex conjugate z = x − iy = re−iθ Then zz = x2 + y2 = r2

Add z1 + z2=z1 + z2 Multiply (z1) (z2)=z1z2 Divide
1

z
=

z

|z|2 =
a− ib

a2 + b2

Real axis

z=1 + i=
√
2eiπ/4

On the circle |z| = |eiθ| = 1

Complex
plane

z=1 − i=
√
2e−iπ/4

+i

−1 +1

−i

Unit
circle
|z|=1

Complex conjugate

π/4

−π/4

Add angles (reiθ) (Reiφ) = rR ei(θ+φ) (i)4=(eiπ/2)4 = ei2π = 1
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9.2 ComplexMatrices : HermitianS = S
T and UnitaryQ−1 = Q

T

Rule When you transpose, take complex conjugates : xT A
T

Automatic for computer systems like MATLAB and Julia

Inner product = Dot product = xTy = x1y1 + · · ·+ xnyn

Length squared = ||x||2 = xTx = |x1|2 + · · ·+ |xn|2 = ||Rex||2 + ||Imx||2

Hermitian matrix S =

[
2 3 − 3i

3 + 3i 5

]
= S

T Real diagonal
Sji = Sij

S has real eigenvalues 8,−1 and perpendicular eigenvectors

det(S − λI) = λ2 − 7λ+ 10−
∣∣3 + 3i

∣∣2 = (λ − 8) (λ + 1)

(S − 8I)

[
1

1 + i

]
=

[
0
0

]
(S + I)

[
1 − i
−1

]
=

[
0
0

]

Unitary matrix
Orthonormal columns Q =

1√
3

[
1 1− i

1 + i −1

]
Q

T
= Q−1

||Qz|| = ||z||
|λ| = 1

The Fourier matrix
F√
N

is the most important unitary matrix
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9.3 Fourier Matrix F and the Discrete Fourier Transform

Fourier Matrix F4 =




1 1 1 1
1 i i2 i3

1 i2 i4 i6

1 i3 i6 i9


 DFT Matrix F4 = powers of−i

FN and FN

N byN matrices
Replace i = e2πi/4

by w = e2πi/N
Fjk = wjk = e2πijk/N

Columns k = 0 to N − 1

w

i

1 = w8−1

w3

w5 w7 = 1
w

w = e2πi/8 w8 = 1

1+w +w2 + · · ·+wN−1 = 0

FNFN = NI Then FN/
√
N is a unitary matrix. It has orthonormal columns

N = 2
w = eπi = −1

F2 =

[
1 1
1 −1

]
F 2F2 =

[
2 0
0 2

]
= NI

Discrete Fourier Transform f to c c = F−1
N f

Inverse Fourier Transform c to f f = FNc
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9.4 Cyclic Convolution and the Convolution Rule

c = (1, 2, 3) Convolution c ∗ d = (5, 10, 19, 8, 12) 1 2 3

d = (5, 0, 4) Cyclic c ∗© d = (5 + 8, 10+ 12, 19) 5 0 4

(1 + 2x+ 3x2) (5 + 4x2) = 5 + 10x+ 19x2 + 8x3 + 12x4 4 8 12

x3 = 1 for cyclic (5 + 8) + (10 + 12)x+ 19x2 5 10 15

5 10 19 8 12

Convolution matrices
Constant diagonals

C=



1 3 2
2 1 3
3 2 1


 D=



5 4 0
0 5 4
4 0 5


 CD =

DC =



13 19 22
22 13 19
19 22 13




Eigenvectors of C andD = columns of the Fourier matrix F

Eigenvalues of C = F−1c Eigenvalues ofD = F−1d

Convolve vectors
Multiply transforms

Convolution Rule
F (c ∗© d) = (Fc) .∗ (Fd)

x . ∗ y = (x1y1, . . . , xnyn) Key to Signal Processing
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9.5 FFT : The Fast Fourier Transform

Direct matrix multiplication of c by FN needsN2 multiplications

FFT factorization with many zeros :
1

2
N log2 N multiplications

N = 210 = 1024 log2 N = 10 1 million reduced to 5000

Step 1 of the FFT : From 1024 to 512 (Cooley-Tukey)
[

F1024

]
=

[
I D

I −D

][
F512 0

0 F512

][
P1024

]

Permutation P1024 puts columns 0, 2, . . . , 1022 ahead of 1, 3, . . . , 1023

Two zero blocks reduce the computing time nearly by 50%

Step 2 of the FFT : 512 to 256 (same factorization of F512)

Recursion continues to small N : log2 N steps to Fast Transform

Each step hasN multiplications from the diagonal matricesD

One overall permutation = product of the P ’s

FFTW is hardwired in many computers / bases other than 2
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Part 10 : Learning from Data
by Gradient Descent

10.1 Learning Function F (x, v0) : Data v0 and Weights x

Training data = p features for N samples = N vectors v0

Each of those N vectors enters level zero of the neural net

Level k from k − 1 : Multiply each vector by Ak, add bk, apply ReLU

vk = Fk(vk−1) = ReLU(Akvk−1 + bk)

ReLU applies to each component of each vector : ReLU(y) = max(y, 0)

y

ReLU(y)
ReLU = ramp function
= Rectified Linear Unit

This gives the nonlinearity that learning functions need

Levels 0 to L Output vL = FL(. . . (F2(F1(v0)))) = F (v0)

F (x, v0) = Composition of L piecewise linear Fk : F is piecewise linear

Each level contributes a weight matrix Ak and a vector bk to x

vp

v1

p=3, q=4 (Av)q [(Av + b)q]+

Neural Net (Av)1 [(Av + b)1]+ One hidden layer

pq + 2q = 20 weights

C[Av + b]+ = wInputs

r(4, 3) = 15 linear pieces
in the graph ofw = F (v)

ReLU

ReLU

ReLU

ReLU

65
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10.2 Counting Flat Pieces in the Graph of F

The weight matrices Ak and bias vectors bk produce F = learning function

Each application of ReLU creates a fold in the graph of F

4

1a 3a

2a

1b 2b 3b
H

Start with 2 folds
← r(2, 2) = 4

Add new foldH
N = 3 folds in

p = 2 dimensions

← r(2, 1) = 3

Total 7 regions

The r(2, 1) = 3 pieces of the new fold H create new regions 1b, 2b, 3b.
Then the count becomes r(3, 2) = 4+3 = 7 flat regions in the continuous piecewise
linear surface v2 = F (v0). A fourth fold would cross all three
existing folds and create 4 new regions, so r (4, 2) = 7 + 4 = 11.

The count r of linear pieces of F will follow from the recursive formula

r(N, p) = r(N − 1, p) + r(N − 1, p− 1)

Theorem For v in Rp, suppose the graph of F (v) has folds along
N hyperplanes H1, . . . , HN . Those come from ReLU at N neurons.
Then the number of regions bounded by the N hyperplanes is r(N,p) :

r(N,p) =

(
N
0

)
+

(
N
1

)
+ · · ·+

(
N
p

)
.

These binomial coefficients are
(
N
i

)
=

N !

i !(N − i) !
with 0 !=1 and

(
N
0

)
=1 and

(
N
i

)
=0 for i>N .

With more layers : N folds from N ReLU’s : still≈ r(N,p) ≈ cNp pieces
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10.3 Minimizing the Loss : Stochastic Gradient Descent

The gradient of a function F (x1, . . . , xp) is a vector∇F = grad F

∇F = (∂F/∂x1, . . . , ∂F/∂xn) points in the steepest direction for F (x)

The graph of y = F (x) = F (x1, . . . , xN) is a surface in N + 1 dimensions

The graph of F = x2
1 + x2

2 + 5 is a bowl in 2 + 1 = 3 dimensions

Minimum of F = ||x||2 + 5 is Fmin = 5 at the point x = argminF = 0

We want the minimizing point x = argminF for a complicated F (x)

Gradient descent starts from a point x0. Go down along the gradient∇F (x0)

Stop at a point x1=x0 − s∇F (x0). Stepsize=learning rate=s=maybe .001

Recompute the gradient∇F (x1) at the new point x1

At every step follow the gradient ∇F (xk) to xk+1 = xk − sk∇F (xk)

Big Problem 1 Many unknowns x1 to xN : all weights in all L layers

Big Problem 2 F (x) = sum of errors in all training samples : many terms

Error Square loss
∥∥∥∥
output
layerL −

known
output

∥∥∥∥
2

or “Cross-entropy loss”

Solution 1 Use error in only one randomly chosen sample / one v0

SolutionB Use sum of errors in onlyB random samples : minibatch

Stochastic gradient descent has new sampling at every step. Successful
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10.4 Slow Convergence with Zigzag : Add Momentum

Test example : Minimize F (x,y) = 1
2
(x2 + by2) with small b > 0

Gradient∇F = (x, by). Exact search (xk+1, yk+1) = (xk, yk)− (best s)∇F

xk = b

(
b− 1

b+ 1

)k

yk =

(
1− b

1 + b

)k

F (xk,yk) =

(
1− b

1 + b

)2k

F (b, 1)

Crucial ratio
(
1− b

1 + b

)2

is near 1 for small b : Slow convergence !

The path zig-zags across a narrow valley : moves slowly down to (0, 0)

Heavy ball Add momentum Direction zk+1 remembers zk

(x, y)k+1 = (x, y)k − szk zk+1 −∇F (x, y)k+1 = βzk

Optimal s
Optimal β

give fast descent : ratio
1− b

1 + b
changes to

1−
√
b

1 +
√
b

b =
1

100

(
1− b

1 + b

)2

=

(
.99

1.01

)2

≈ .96 changes to
(
0.9

1.1

)2

≈ .67 !

ADAM Gk combines all earlier gradients byGk = δGk−1 + (1− δ)∇F (xk)

Question Why do the weights (matricesAk) work well for unseen data ?
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10.5 Convolutional Neural Nets : CNN in 1D and 2D

Convolution matrix =Moving average
A has constant diagonals

Sliding window : same weights
1

2
,
1

2
in each window

A =




1
2

1
2

1
2

1
2

1
2

1
2




2D Convolution for Images
Windows move across and down
Nine 3× 3 windows in 5× 5 square
Center points are marked 1 to 9
Only 32 = 9 weights to choose

1 2 3

4 5 6

7 8 9

A convolutional filter treats all positions the same

1. Many weights repeated—distant weights are zero

2. 32 = 9 weights copied in every window

3. No reason to treat positions differently—“shift invariant”

Recognizing digits (like Zip codes) in MNIST : Basic test data

Max-pooling Reduce dimensions Take max from each block of outputs

Softmax Convert outputs wk to probabilities pk = ewk/
∑

ewk

Residual network Add skip connections that jump several layers

Batch normalization Reset the input variance at each new layer
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10.6 Backpropagation : Chain Rule for∇F

F (x)= minimum ∇F = partial derivatives ∂ errors / ∂ weights=zero

Chain rule
d

dx

(
F2(F1(x))

)
=

(
dF2

dF1

(F1(x))

)(
dF1

dx
(x)

)

Multivariable chain rule
∂w

∂u
=

(
∂w

∂v

)(
∂v

∂u

)
L layers in chain
Multiply L matrices

∂w

∂v
=




∂w1

∂v1
· · · ∂w1

∂vn
· · ·

∂wp

∂v1
· · · ∂wp

∂vn




∂v

∂u
=




∂v1
∂u1

· · · ∂v1
∂um

· · ·
∂vn
∂u1

· · · ∂vn
∂um




p× n n×m

At each layer
Derivatives before ReLU

w = Av + b
∂wi

∂bj
= δij = 0 or 1

∂wi

∂Ajk

= δijvk

Product of matricesABC AB first or BC first ? Forward or back ?

For∇F in deep learning, going backward is faster : Reverse modeBC first

Example A=m× n B=n× p C=p× 1 vector Don’t multiplyAB !

Backpropagation = Automatic Differentiation = the key to speed
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Part 11 : Basic Statistics :
Mean, Variance, Covariance

11.1 Mean and Variance : Actual and Expected

The sample mean µ is the average of outputs from N trials

The expected meanm is based on probabilities p1, . . . , pn of outputs x1, . . . , xn

Expected valuem = E[x] = p1x1 + · · · + pnxn

Law of Large Numbers : With probability 1, sample mean→ m as N→∞

The sample variance measures the spread around the sample mean µ

S2 =
1

N − 1

[
(x1 − µ)2 + · · ·+ (xN − µ)

]2

The variance is the expected value of (x−m)2 based on probabilities

σ2 = E[(x−m)2] = p1(x1 −m)2 + · · ·+ pn (xn −m)2

Second formula for this important number : σ2 =
∑

pi x
2
i −m2

Fair coin flip x=0 or 1, p1=p2=
1
2
: Meanm= 1

2
Variance σ2= 1

2
− 1

4
= 1

4

Continuous probability distributions : Sums change to integrals
∫
p(x) dx=1 m=

∫
x p(x) dx σ2=

∫
(x−m)2 p(x) dx

72
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11.2 Probability Distributions : Binomial, Poisson, Normal

1 Binomial : pk,n = probability of k heads in n trials (coin flips)

p1,1 = p pn,n = pn pk,n =
n!

k! (n− k)!
pk(1− p)n−k (0 ! = 1)

Meanm in n trials = np Variance σ2 in n trials = np (1 − p)

2 Poisson : Rare events p → 0, many trials n → ∞ Keep np=λ constant

No successes p0,n=(1− p)n=

(
1− λ

n

)n

→e−λ k successes pk,n→
λk

k!
e−λ

Poisson mean = λ variance σ2 = λ Limits of binomial np and np (1− p)

3 Normal distribution : N(m, σ2) has p(x) =
1

√
2π σ

e−(x − m)2/2σ2

Bell-shaped curve / Symmetric around mean / Standard N(0, 1) is
1√
2π

e−x2/2

Shifted and scaled X =
x − m

σ
Centered and normalized

Central Limit Theorem for any distribution p(x) Average many samples

The probabilities for the average X of X1 toXM approaches N(0, 1) asM →∞

Normal p(x) for n variables Meansm = (m1, . . . , mn) Covariance matrix V

p(x) = p(x1, . . . , xn) =
1(√

2π
)n √

detV
e−(x−m)

TV −1

(x−m)/2
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11.3 Covariance Matrices and Joint Probabilities

M experiments at once M = 2 for (age x, height y)

Mean m = (mx, my) = (average age, average height)

Joint probabilities pij = probability that age = i and height = j

pi =
∑

j

pij = probability that age = i allowing all heights j

Expected value of (x−mx)
2 = σ2

11 =
∑

pi (xi −mx)
2 = usual variance

Expected value of (x−mx)(y−my)=σ12=
∑

i

∑

j

pij(xi−mx)(yj−my)

Covariance matrix V =
∑

i

∑

j

pij

[
(xi−mx)

2 (xi−mx)(yj−my)
(xi−mx)(yj−my) (yj−my)

2

]

V = sum of positive semidefinite rank 1 matrices = semidefinite or definite

V is positive definite unless age tells you the exact height (dependent case)

V is a diagonal matrix if age and height are independent : covariance = 0

Coin flip
Glue 2 coins together V =

[
1/4 1/4
1/4 1/4

]
=

dependent case :
semidefinite V

Separate the coins V =

[
1/4 0
0 1/4

]
=

independent :
diagonal V
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11.4 Three Basic Inequalities of Statistics

Markov’s inequality when x ≥ 0 : No negative samples

The probability of x ≥ a is at most
E[x]
a

=
meanm

a

Suppose a = 3 and meanm =
∑

xipi = 0p0 + 1p1 + 2p2 + · · ·

Markov’s inequality says probability p3 + p4 + p5+ · · · ≤
m

3

Writem = p1 + 2p2 + 3(p3 + p4 + p5 + · · · ) + p4 + 2p5 + · · ·

No negative terms som ≥ 3(p3 + p4 + p5 + · · · ) THIS IS MARKOV

Chebyshev’s inequality The probability of |x−m| ≥ a is at most
σ2

a2

Proof Apply Markov’s inequality to the new variable y = |x − m|2

The mean value E[y] for y is the variance σ2 for x

Apply Markov ! The probability of y ≥ a2 is at most
E[y]
a2

=
σ2

a2

Chernoff’s inequality S = X1 + · · ·+Xn independent random variables

What is the probability that S is far from its mean S ?

Prob
(
S ≥ (1 + δ)S

)
≤ e−Sδ2/(2+δ) Exponential dropoff !

Prob
(
S ≤ (1 − δ)S

)
≤ e−Sδ2/2 Bound for 2δ = (Bound for δ)4

Reason : A large sum S usually needs several Xi to be large / unlikely !
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11.5 Markov Matrices and Markov Chains

Markov matrix AllMij ≥ 0 All columns add to 1

Perron-Frobenius
Eigenvalues ofM

λmax = 1
| other λ |< 1 if allMij > 0

| other λ |≤ 1 if allMij ≥ 0

Markov chain pn+1 = Mpn Probabilities at times n+ 1 and n

M =

[
0.8 0.3
0.2 0.7

]
has λ = 1 and λ =

1

2
Mn has λ = 1 and λ =

(
1

2

)n

[
Rental cars in Chicago
Rental cars in Denver

]

n + 1

= M

[
in Chicago
in Denver

]

n

yn+1 = Myn

Start in Chicago y0 =

[
100
0

]
y1 =

[
80
20

]
y2 =

[
70
30

]
y3 =

[
65
35

]

Start in Denver y0 =

[
0
100

]
y1 =

[
30
70

]
y2 =

[
45
55

]
y∞ =

[
60
40

]

Steady state from every start : Eigenvector ofM for λ = 1 is
[
60
40

]

Other eigenvalue λ =
1

2
: Distance to

[
60
40

]
is halved at every step
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